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Background (related work)

Past researches

- Resource allocation(RA)/task scheduling optimizing processing delay.
- Task offloading(TO) between servers optimizing propagation delay.

- Game-based edge-edge offloading with joint RA & TO.

Novelty of this paper
Collaborative edge-edge cooperation with joint RA & TO.
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System Model(Delay Model)
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System Model (Propagation Delay)

Cumulative propagation delay of requests T.. —e.: - Niip - . .
forwarded from cluster i to j: 1 = Cig Z( ijh k), 1 € C,j € C
4 kEA
_ . The amount of
Aggregation of . application ks
propagation requests
delay forwarded from
clusterito ]
Propagation delay for a single ) .
request forwarded from cluster i to j: tij = €ij - dky 1e€C,jeCkeA

. Average data
“*... size of a single
" request for
application k

Propagation
speed from ./
clusteri to |



System Model (Processing Delay)
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System Model (Requests Forwarding)

Amount of application k’s requests being
forwarded from cluster i to j:
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System Model (Requests Forwarding)

Amount of application k’s
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System Model (Requests Forwarding)
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System Model (Constraint)
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System Model (Problem Formulation)
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Algorithm (Dynamical Requests Forwarding)

 This algorithm helps compute requests forwardin
once the(resources allocation)and propagation speed)
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Algorithm (Dynamical Requests Forwarding)

Algorithm 1 Dynamical Requests Forwarding

Input: [Reg;x), [Req; ) [€35]
Output: [N;;x]
1: Initialize [N;;x] as a 3D-array filled with zeros.
2: Initialize prevC,, as a 2D-array filled with zeros.
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Simulation (Settings)

% System Settings: 3 clusters.

“ Resource Settings: CPUs random in [5, 15], Memory
random in [4GB, 10GB] in each cluster.

% Parameter Settings: Propagation speed between
clusters random in [1MB/s, 20MB/s].

< Processing Efficiencies: 1 = ks Ré‘}’“uk Ty J\I;vaiz’;ry-k




Simulation (Algorithms compared)

: Clusters make RA & TO decision collaboratively.
“ NTO: No task offloading between clusters.
“ GTO: Each cluster make rational resource allocation and

task offloading decision without considering the others.



Simulation (Results Evaluation)
35% lower delay with Iarge amount of task
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Simulation (Results Evaluation)
30% lower delay at large variance of requests distribution
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Conclusions

% The collaboration task offloading between edge clusters is
investigated through a joint RA & TO mechanism

“ A centralized and greedy algorithm is proposed, yielding
better results than existing algorithms

> 30% lower delay than a non-cooperative one

> 20% lower delay than one proposed in a previous work



Future Works

% Consider scenarios involving micro-services and diverse
network topologies.
“ Consider container scaling to improve processing efficiency.

% Conduct experiment on IEEE1935 testbed.
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