Collaborative Vehicular Edge Computing

Design for Delay-Sensitive Applications

Jing-Yang Voon, Yao Chiang, Cheng-Rui Jia, Hung-Yu Wei

Background

Driving ' W< o Management

EDGE
COMPUTING

Enhanced
Driver
Assistance
Systems

Entertainment

Background (scenario)

Vehicles' Request Distribution

< M
Task Offloading Process

——
Resource Allocation Decision ‘
Edge Area 7 ~
Edge Area
S | [l (S Y =

EFO Vehicle | (/| N

oo ., .‘
= £ 0o 0 0o

Control Node Compute Node

High workload area Low workload area

Background (related work)

Past researches

- Resource allocation(RA)/task scheduling optimizing processing delay.
- Task offloading(TO) between servers optimizing propagation delay.

- Game-based edge-edge offloading with joint RA & TO.

Novelty of this paper
Collaborative edge-edge cooperation with joint RA & TO.

System Model

- -

LN

Control Node

Wy

Compute Node

Cluster 1

Serve Requests

Deployed
Containers

Requests
forwarded by
load-balance

Orchestrator

>

- <

]z// \l\\/ |

Control Node

(

<

Compute Node

Cluster 2

Allocate resource for
each clusters

N
Containers
Optimization
Control Node
Containers
Deployment

Compute Node

Cluster 3

Requests distribution Requests distribution Requests distribution

System Model(Delay Model)

Average delay of the , D. - Regq;i.

overall system: D = avg([D;]) = Licc(Ds Zkeg i)
bl ZiEQ > ke Regik
Averaging

cluster delay

/

Average delay of a
g t Di:a’vg([DPij +DTij]):

> iecTij + Pij)
single edge cluster: (S

ZkeA Reqik

Averaging
propagation delay

Averaging
processing delay

Pij = Z(njk -Niji),1€C,jeC Ti; = eij - E(Nz'jk -dy),1€C,jeC
kecA k€A
Cumulative processing delay of requests Cumulative propagation delay of requests
forwarded from cluster i to | forwarded from cluster i to

System Model (Propagation Delay)

Cumulative propagation delay of requests T.. —e.: - Niip - . .
forwarded from cluster i to j: 1 = Cig Z(ijh k), 1 € C,j € C
4 kEA
_ . The amount of
Aggregation of . application ks
propagation requests
delay forwarded from
clusterito]
Propagation delay for a single) .
request forwarded from cluster i to j: tij = €ij - dky 1e€C,jeCkeA

. Average data
“*... size of a single
" request for
application k

Propagation
speed from ./
clusteri to |

System Model (Processing Delay)

Cumulative processing delay .
of requests forwarded from P;; = Z(njk - N;jk), 1€ C,jeC
clusteri to j: kEA 4
Aggregation
of processing
delay

: _ 7
Processing delay of a single request _ / .
forwarded from cluster i to j: Njk = nk(Eeqjk’ [Ri]),j€Cke A

Resources allocated to

Requests amount cluster j for the

being handled by deployment of application
cluster j «

System Model (Requests Forwarding)

Amount of application k’s requests being
forwarded from cluster i to j:

Amount of application k’s
requests being handled locally:

Regq;y,, Reqirx > Regy,
Niix =

{

Regq;1, Reqix < Req;,,

Determination for each
conditional cases.

_Original amount of

application k’s
requests in cluster n

0, Condition;nyalid
Nijk =

/{

conditioninyaiid : Reql), +

min(z,y), Conditionyqgiid

2

peC—prevCj

[*Amount of resources

Nigr > Req;x

|Reqj, < Regjk + Y Najki
aeC—prevC;
conditionyqlid - else;
& = Reqj, — Reqji — Z Nojk
aceC—prevC;
y = Reqix — Reqjy, — Z Nigk;
BeC—prevC;

Re-distributed application k’s
requests on cluster j.

with type | allocated
in cluster j for
application k

System Model (Requests Forwarding)

Amount of application k’s

requests being handled locally: Indicates that

cluster i has more Thus it should handle

Req,, Reqir, > Reqlp.. .} v requests that it \ only partial of its

Niik = ok - fk should handle. received requests
Regik, Rf?‘h’k < Regy, locally. The amount is
. exactly Req’ik as we

computed.
»

Indicates that
cluster i has less

requests that it
should handle. \ [hus 1t ehoue
handle all of its

received requests
locally.

System Model (Requests Forwarding)

Indicates that cluster i has no exceed
request or cluster j is not available to handle
any exceed request.

!

Thus no request forwarding between
clusteriand|.

Indicates that cluster i has exceed request(s)
and cluster j is available to handle exceed
request(s).

! !

Cluster j can
handle all the

Cluster j can
handle only partial

exceed of the exceed
request(s) from request(s) from
cluster i. cluster i.

Availability - -
of cluster j

Amount of application k’s requests being
forwarded from cluster i to j:

.
.
.
*

[condition;nyatid Rquk + Z

V..

0, Condition;nyalid
Niji = . s
min(x,y), Condition,qiid

Nigr > Req;k

BeC—prevC;
/ .
||Reqjr < Reqj + Z Noji;
aeC—prevC;
1. conditionyaiiq : else;
’

............. T = Reqjk — Rerk — Z Najk

aceC—prevC;

/

y = Reqik — Req;, — Z Nigk;

E BeC—prevC;

Remainihg exceed
request(s) in cluster i.

System Model (Constraint)

* E : . Filter that helps in avoiding resource

D _ D + Q O'(a/)’z) Pl allocation exceed the resource constraints
’YiECOﬂSte? + in each cluster. *

1 e Generate large Have no
o ax) = — virtual delay if effect if obey
............. 1+ ez doesn’t obey the the resource
................... resource constraints. constraints

9% o o Ci: E Ry, < Resj.,j € C,k € A,r € R,
k

Example when a=100

System Model (Problem Formulation)

min{D* = D*([Req;x|, [Res;), [Rir])},7 € C,k € A,l € R;

Algorithm (Dynamical Requests Forwarding)

 This algorithm helps compute requests forwardin
once the(resources allocation)and propagation speed)

between clustergjare fixed.

Reqj, = > CJT| ol Z Regnk : :
" nee Memorize the previously
Rl = /2 B forwarded requests from
| _[clustern Compute local
Algorithm 1 Dynamicf yRequests F’pﬁ warding ___,.....- requests first as they
Input: [Req;r]{[Red.])ei; ‘____,..-- .
Output: [Ny — 7 ese" have no propagation

1: Initialize [N as ,3.3D"; array filled with zeros.
2: Initialize as a 2D-array filled with zeros.
3: for ¢ loop through each cluster do

4: for k loop through each application do

. L)

¢ / % > Req

7: Sort [e;;] in ascending order .".,. Niik — Reqlk" Rquk = Reqlk
8: for i, j loop through [e;;] do R Reqg.... Reg;. < Red’

o: if il =j then dik, 119k Tik
10: for k loop through each application do ".,. . o

I Compute Ny using Eq. 9 ~.. | Append 7 into prevC;
12: Append j, ¢ into prevC;, prevC); respectively e

13: return [N;;]

Algorithm (Dynamical Requests Forwarding)

Algorithm 1 Dynamical Requests Forwarding

Input: [Reg;x), [Req;) [€35]
Output: [N;;x]
1: Initialize [N;;x] as a 3D-array filled with zeros.
2: Initialize prevC,, as a 2D-array filled with zeros.
3: for ¢ loop through each cluster do
for k loop through each application do
Niir, = Reqjy,
Append i into prevC;
ort [e;;] in ascending order
: for 7, 7 loop through [e;;| do
if i! = j then
10: for k loop through each application do

»

11:

13: return [N;jx]

Ensure requests
can be offloaded as
near as possible.

min(z,y), Condition,qiid

o 0, Conditioninyalid
Niji =

COnditioninvalid . Req:k + Z

Nigr > Reqix

Najk

Nigk;

peC—prevC;
/
|| Reqj), < Regjx + Z Nojk;
aeC—prevC;
condition,qgiq : else;
/
z = Reqj;, — Reqjr — E
aeC—prevC;
/
y = Reqir — Reqly — Y
BeC—prevC,;

A_ppend 7, © 1nto prevai, prevaj respectively

Simulation (Settings)

% System Settings: 3 clusters.

“ Resource Settings: CPUs random in [5, 15], Memory
random in [4GB, 10GB] in each cluster.

% Parameter Settings: Propagation speed between
clusters random in [1MB/s, 20MB/s].

< Processing Efficiencies: 1 = ks Ré‘}’“uk Ty J\I;vaiz’;ry-k

Simulation (Algorithms compared)

: Clusters make RA & TO decision collaboratively.
“ NTO: No task offloading between clusters.
“ GTO: Each cluster make rational resource allocation and

task offloading decision without considering the others.

Simulation (Results Evaluation)
35% lower delay with Iarge amount of task

B NTO B GTO

thh"hll””

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

80

60

4

o

Average Delay(s)

2

o

o

Task Amount

Simulation (Results Evaluation)
30% lower delay at large variance of requests distribution

B NTO ®mGTO CTO
50

40

30

20

10

0
1 2 3 4

Variance of Requests Distribution(k)

Average Delay(s)

Conclusions

% The collaboration task offloading between edge clusters is
investigated through a joint RA & TO mechanism

“ A centralized and greedy algorithm is proposed, yielding
better results than existing algorithms

> 30% lower delay than a non-cooperative one

> 20% lower delay than one proposed in a previous work

Future Works

% Consider scenarios involving micro-services and diverse
network topologies.
“ Consider container scaling to improve processing efficiency.

% Conduct experiment on IEEE1935 testbed.

References

[1] Y. Chiang et al., "Management and Orchestration of Edge Computing
for IoT: A Comprehensive Survey,” in IEEE Internet of Things Journal,
vol. 10, no. 16, pp. 14307-14331, 15 Aug.15, 2023.

M. Najm, M. Patra, and V. Tamarapalli, “Cost-and-delay aware dynamic
resource allocation in federated vehicular clouds,” IEEE Trans. Veh.
Tech- nol., vol. 70, no. 6, pp. 6159-6171, Jun. 2021.

Y. Chiang, C. -H. Hsu, G. -H. Chen and H. -Y. Wei, "Deep Q-Learning-
Based Dynamic Network Slicing and Task Offloading in Edge Network,”
in IEEE Transactions on Network and Service Management, vol. 20, no.
1, pp. 369-384, March 2023.

L. H. Phuc, M. Kundroo, D. -H. Park, S. Kim and T. Kim, ”Node-
Based Horizontal Pod Autoscaler in KubeEdge-Based Edge Computing
Infrastructure,” in IEEE Access, vol. 10, pp. 134417-134426, 2022.

L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan and M. Xiao, ”Asynchronous
Deep Reinforcement Learning for Collaborative Task Computing and
On-Demand Resource Allocation in Vehicular Edge Computing,” in
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no.
12, pp. 15513-15526, Dec. 2023.Magnetics Japan, p. 301, 1982].

T. X. Tran and D. Pompili, ”Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” in
IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856-
868, Jan. 2019.

(2]

(3]

(4]

(5]

6]

(7]

(8]

[9]

(10]

(11]

[12]

“IEEE standard for edge/fog manageability and orchestration,” IEEE
standard 1935-2023, 2023.

ETSI, “Mobile edge computing (mec); framework and reference archi-
tecture,” ETSI, DGS MEC, standard 3, 2016.

K. Ye, Y. Kou, C. Lu, Y. Wang and C. -Z. Xu, "Modeling Appli-
cation Performance in Docker Containers Using Machine Learning
Techniques,” 2018 IEEE 24th International Conference on Parallel and
Distributed Systems (ICPADS), Singapore, 2018.

W. Fan et al., ”Game-Based Task Offloading and Resource Allocation
for Vehicular Edge Computing With Edge-Edge Cooperation,” in IEEE
Transactions on Vehicular Technology, vol. 72, no. 6, pp. 7857-7870,
June 2023.

Y. -J. Ku, P. -H. Chiang and S. Dey, ”Real-Time QoS Optimization
for Vehicular Edge Computing With Off-Grid Roadside Units,” in IEEE
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11975-11991,
Oct. 2020.

W. Fan et al.,, ”Joint Task Offloading and Resource Allocation for
Vehicular Edge Computing Based on V2I and V2V Modes,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp.
4277-4292, April 2023.

Q&A

Thanks

