
1

Edge Computing Management with Collaborative
Lazy Pulling for Accelerated Container Startup

Chiao-Cheng Chen, Yao Chiang, Member, IEEE, Yu-Chieh Lee, and Hung-Yu Wei, Senior Member, IEEE

Abstract—With the growing demand for latency-sensitive ap-
plications in 5G networks, edge computing has emerged as a
promising solution. It enables instant response and dynamic
resource allocation based on real-time network information by
moving resources from the cloud to the network edge. Containers,
known for their lightweight nature and ease of deployment,
have been recognized as a valuable virtualization technology
for service deployment. However, the prolonged startup time
of containers can lead to long response time, particularly in
edge computing scenarios characterized by long propagation
time, frequent deployment, and migration. In this paper, we
comprehensively consider image caching, container assignment,
and registry selection problem in an edge system. To our best
effort, there is no existing work that has taken all the above
aspects into account. To address the problem, we propose a
novel image caching strategy that employs partial caching,
allowing local registries to cache either the least functional or
complete version of application images. In addition, a container
assignment and registry selection problem is solved by using an
edge-based collaborative lazy pulling algorithm. To evaluate the
performance of our proposed algorithms, we conduct experiments
with real-world app usage data and popular images in a testbed
environment. The experimental results demonstrate that our
algorithms outperform traditional greedy algorithms in terms
of average user response time and cache hit rate.

Index Terms—Edge computing, 5G, Container, Caching, Re-
source allocation.

I. INTRODUCTION

The emergence of latency-sensitive applications such as
autonomous vehicles, virtual reality (VR), augmented reality
(AR), and smart factories in the fifth-generation (5G) cellular
networks has prompted the adoption of Multi-access Edge
Computing (MEC) [1, 2] as a practical solution. MEC involves
the relocation of processing and storage capabilities from the
central node to the network edge. By deploying applications
on edge nodes, MEC improves the quality of service (QoS)
by processing tasks closer to the users [3]. Owing to the ad-
vantages of lightweight and easy deployment, containers have
gained recognition as a valuable virtualization technology.
For example, Google Search launches approximately 7,000
containers per second [4]. Recently, containers have been
increasingly utilized in edge computing for frequent and rapid
service deployment. Additionally, Kubernetes [5], an open-
source platform for managing, scaling, and automating the
deployment of containerized applications, is widely used in
the industry.

Nevertheless, the deployment of containers in an edge
computing environment faces multiple new challenges. First, it
is impossible to maintain a pool of hot workers to accelerate
container provisioning as in a cloud environment owing to

the limited storage and computation resources [6]. Second,
due to the extended propagation time, retrieving application
images from a cloud-based registry to an edge node consumes
a considerable amount of time and significantly slows down
the service provisioning time, as evidenced by the fact that
the download process constitutes 76% of the entire container
startup time [7]. Consequently, the long container startup
process violates the low latency demands of users. Further-
more, applications running on the edge have a substantial
influence on user mobility, frequent deployment, and migration
of containers within the dynamic edge computing system,
thereby exacerbating the previously mentioned issue.

As a result of the constrained computational and storage ca-
pacity in edge computing, how to efficiently schedule services
and allocate resources to ensure prompt service response has
become one of the most challenging topics [8]. To cope with
the slow service response time and resource allocation issue,
several studies explore the service or package caching [9–
14] approach and discuss various caching strategies. However,
these studies overlook the possibility of applying a partial
caching scheme, which is commonly utilized in the caching
of video or data. Another approach investigates designing an
efficient method to schedule tasks or assign containers to
suitable edge nodes to enhance the overall service provisioning
time or reduce the resource cost [15–20]. It is worth noting
that the aforementioned research primarily focuses on the
downloading of application packages or images from a cloud
source, but does not jointly take advantage of the benefits
offered by deploying multiple distributed local registries.

From another perspective, considering that a mere 6.4%
of the image data transmitted during a pull operation is
actually indispensable before a container can begin useful
work according to the analysis of 57 images in [7]. Certain
work utilizes the concept of exclusively downloading the
requisite files before launching a container in order to avoid
unnecessary waiting delay of retrieving data that will be used
at a later stage, and thus expedite container startup time [7, 21–
23]. However, the majority of these works concentrate on
the cloud environment rather than in the context of edge
computing, thereby neglecting the unique characteristics and
is less applicable in resource-constrained and long propagation
nodes.

Motivated by the aforementioned studies and the identified
challenges, the objective of the work is to tackle the issue of
image caching, container assignment, and registry selection
that involves multiple registries and compute nodes across
diverse edge areas. Recognizing that users within the same
region often possess similar application preferences, we pro-

2

pose a system that deploys multiple local registries in each
edge area to cache popular application images. Our caching
scheme facilitates least functional-based partial caching, in
which we can decide to cache either the least functional or
complete function version for each application image. For
those users who merely require basic application functionality,
we can immediately execute tasks upon downloading the least
functional portion of an image, denoted as the partial version.
Subsequently, we provide services to the users who request
advanced and complete functionality once the compute node
downloads the entire image. Diverging from the traditional
lazy pulling approach, we devise a novel concept that lever-
ages local registries to collaboratively download images. To
be more specific, our method can cache the least essential
component of an image in local registries. We can retrieve the
partial version from the local registry, while downloading the
remaining files from the same local registry or the appstore.

The main contributions of this paper can be summarized as
follows:

1) Combining lazy pulling techniques and partial caching
capability on an edge computing architecture using local
registries to accelerate the container startup time.

2) Formulating the optimization problem that aims to min-
imize the average user response time by considering image
caching, container assignment, and registry selection, while
taking into account an edge-based collaborative lazy pulling
method.

3) Proposing least functional-based image caching decision
algorithm and edge-based collaborative container assignment
and registry selection algorithm to enhance space utilization
efficiency and minimize average user response time.

4) Conducting comprehensive experiments using 20 widely-
used applications from Docker Hub, along with a user ap-
plication usage dataset on a real-world testbed to thoroughly
evaluate the performance of our proposed algorithms. The
results showcase a significant reduction in the average user
response time, coupled with a substantial increase in terms of
cache hit rate.

The rest of this work is structured as follows: Section
II provides an overview of relevant literature, while Section
III delves into our system model. Subsequently, our problem
formulation and proposed algorithms are presented in Sec-
tion IV. Finally, Section V assesses the performance of the
proposed algorithms through real-world data and experiments
and Section VI concludes this work.

II. RELATED WORK

In this section, we discuss the existing literature on edge
computing caching and the lazy pulling technique. We then
present a comparative analysis between these existing works
and our proposed work.

A. Caching in Edge Computing

Given the limited storage capacity of edge nodes, resource
allocation emerges as a crucial concern in an edge computing
system. Xiao et al. [24] focus on caching application data on
edge servers by employing an online collaborative algorithm

to minimize system cost from the app vendor’s perspective,
while the authors in [25] investigate the joint problem of video
caching decision, computation, and radio resource allocation
by using robust optimization to maximize the revenue of
computation and radio resources. Moreover, [26] employs a
reinforcement learning-based model to improve overall QoE
and cache hit rate and an approach is proposed in [27] for
shared node selection and cache replacement, aiming for lower
user request latency and energy consumption in device-to-
device assisted MEC networks. Additionally, video and data
are fragmented into small segments when deciding the caching
strategy to enhance space utilization, such as [28–30]. In these
works, partial caching refers to the caching scheme in that only
part of the video or data is cached.

For caching services or applications on edge nodes, The
authors in [9] propose a proactive caching strategy that
caches execution codes at the MEC server using a dynamic
programming-based algorithm. The approach aims to reduce
execution delay and energy consumption. Similarly, a task
caching and offloading problem with the primary objective
to minimize the energy cost is explored in [10] and the
authors propose an alternating iterative algorithm as a solu-
tion. In [11, 12], deep reinforcement learning-based caching
algorithms are employed to solve a package caching problem
in serverless edge computing. Ma et al. [13] focus on address-
ing the optimization of edge service caching and workload
scheduling to minimize service response time and outsourcing
traffic based on Gibbs sampling and water filling techniques.
Furthermore, the work [14] minimizes computation latency
by determining service caching and task offloading strate-
gies utilizing a Lyapunov-based online algorithm. However,
none of the above studies consider a partial caching strategy
when tackling application caching problem as data and video
caching. Moreover, container assignment and registry selection
problems are also not considered in the above studies.

B. Container Assignment and Registry Selection

In the field of edge computing, a series of work have
been devoted to the scheduling problem of containers in order
to achieve reduced response time. A three-step layer-aware
scheduling algorithm is introduced in [15] that assigns multiple
containers to edge nodes and decides the download sequence
by considering the concept of layer sharing. In [16], a depen-
dency scheduling method based on the dependencies between
tasks is presented and implemented for improving the startup
latency. Nevertheless, both of the studies overlook the scenario
of multiple registries when it comes to downloading the
required images onto the edge nodes. The work [17] addresses
the optimization of service placement and network selection
and introduces an iterative-based algorithm to minimize the
access delay, communication delay, and switching delay. In
[18], the authors propose an deployment algorithm that is
based on Adam and weighted round-robin algorithm to mini-
mize the cost of microservice deployment involving computing
resources and storage resources. Sami et al. [19] present a
DRL-based solution called IScaler to generate resource scaling
and container placement decisions in MEC while taking the

3

TABLE I
A COMPARISON TABLE OF RELATED LITERATURE

Architecture Objective Container
Assignment

Registry
Selection Caching Scheme Lazy Pulling Real

Data
[9] Edge Energy consumption + execution delay X X Whole X X

[10] Edge Energy consumption X X Whole X X
[11] 2-tier edge Cache hit rate + QoS violation number X X Whole X X
[12] 2-tier edge Service response time X X Whole X X
[13] Edge Service response time X X Whole X X
[14] Edge Computation latency X X Whole X X
[15] Edge Container startup time O X X X O
[16] Edge Container startup time O X X X O
[17] Edge Quality of Service O X X X O
[18] Edge Resource consumption cost O X X X O
[19] Edge Application load + Costs O X X X O
[20] General Container startup time O O X X O
[7] General Container startup time X X X Traditional O

[23] 2-tier edge Container startup time X X X Traditional O
LFPEC 3-tier edge User response time (include container startup time) O O LF Partial EC O

Hints: LF Partial = Least functional-based partial EC = Edge-based collaborative

demand of users and available resources into consideration.
Additionally, the authors of [20] tackle the challenges of deter-
mining the appropriate deployment locations for microservices
and selecting the registries to retrieve images. They suggest an
accelerated distributed augmented lagrangian-based distributed
algorithm exploiting the layer sharing concept. However, these
studies fail to take into account of the characteristic that users
within the same edge area tend to have similar application
preferences. Accordingly, the existing studies mentioned above
do not jointly consider the utilization of local registries to
cache popular images, which could effectively reduce the
image download time and further improve the user response
time.

C. Container Startup Acceleration

All the aforementioned works are not highly aware of the
fact that not all application files are required during the startup
of a container, thus resulting in unnecessary waiting time
and prolonged container startup duration. Another aspect of
reducing the provisioning time involves launching a container
before downloading all the files. While most of the existing
research concentrates on cloud or general environments, they
do not consider the specific characteristics of edge computing
and cannot yield significant benefits. For instance, the authors
in [7] conduct an evaluation on the deployment time of 57
different images and design a new Docker storage driver that
speeds up container startup time by lazily fetching the required
data based on the analysis. Similarly, a novel architecture is
proposed in [23] that aims to accelerate container provisioning
time on edge nodes by redesigning the deployment mecha-
nisms. Moreover, [31] proposes a mechanism allowing less
data transmission for image building by node-local duplicate
data awareness, thus improving container update efficiency. A
technique in [32] is introduced to effectively reduce container
startup latency and memory wasting by its layer-wise sharing-
aware container pre-warming and keep-alive mechanism.

However, the above studies primarily deal with reducing
the container startup time, disregarding the potential collab-

oration between multiple registries that can further expedite
provisioning time in edge computing scenarios.

D. Summary

A comparison of related work is listed in Table I. We
take into consideration the features including system architec-
ture, objective, registry selection, container assignment, lazy
pulling, partial caching, and using real-world data or not.
In summary, the analysis reveals that current research lacks
a comprehensive approach that simultaneously incorporates
partial caching and lazy pulling, which allows for caching the
least functional version of images and involves cooperation
between multiple registries in the decision-making process for
caching, container assignment, and registry selection. Further-
more, by the combination of partial caching and lazy pulling,
we aim to optimize not only container startup time but the
total user response time and also make the most efficient use
of our storage capacities.

III. SYSTEM MODEL

In this paper, we examine a 3-tier edge computing architec-
ture including orchestrator-level, control-level, and computer-
level defined in the IEEE 1935 Edge standard [33, 34] for re-
source and application management and orchestration [35, 36].
The system depicted in Fig. 1 is capable of caching application
images in local registries for compute nodes to download
necessary files and provide services to users. The five major
components in the system will be described as follows:

1) Orchestrator: An orchestrator-level entity collecting a
global view of the system including the cache list of local reg-
istries, resource information, and historical application request
records, from each control node. After determining decisions,
it sends control messages to control nodes.

2) Control Node: There are multiple edge areas within
the whole system. In our scenario, users in the same edge
area have similar application preferences and a majority of
them tend to consistently request an identical application

4

service. For example, within the campus edge area, most of the
users demonstrate a preference for accessing academic records
through the application of the student information system
(SIS), whereas payment services are prevalent in a shopping
district. We denote the set of users within edge area m as
Um = {1, 2, ..., Um}. Every individual user initiates a request
for an application service in a time slot, and pu is the required
number of CPU cycles for the given task. The control node is
a control-level entity that is in charge of managing the cache
inventory of a local registry, monitoring the resource utilization
of each compute node, and documenting the historical request
made by each user within the corresponding edge area.

3) Appstore: A computer-level entity regarded as a global
registry with unlimited storage resources. It is responsible for
operating a private registry service to store every application
images that can be used throughout the entire system. Before
uploading the images onto the appstore, each application
image must undergo testing and authorization procedures to
guarantee both security and functionality. The set of accessible
applications in the whole system is represented as A =
{1, 2, ..., A}. Here we make a straightforward assumption that
a request to instantiate an application corresponds to launching
a container on a compute node. Additionally, an application
image for application a is denoted as ha.

4) Local Registry: Each edge area exists a local registry
with limited cache space Sbm . Besides caching a whole
application image, a local registry is a computer-level entity
that is able to partially cache a least functional application
image. Therefore, a set of versions of an application image
is denoted as V = {partial, whole} where respectively offer
fundamental and complete functionality. In addition, we use
scomp(h(a,v)) to represent the compressed size of image h(a,v)
because local registries store compressed images. In order to
determine which files are necessarily needed when a container
launches, we record the order of file access during a testing
process and select those files to form the content of the partial
version of an image.

5) Compute Node: A computer-level entity that delivers
application services to users. The set of compute nodes in edge
area m is denoted asWm = {1, 2, ...,Wm}. Therefore, the set
of all compute nodes can be represented as W = {w | w ∈
Wm,∀m ∈M}. Each compute node w has limited resources
with τw storage space and fw CPU frequency. Additionally,
there is a constraint on the maximum number of concurrent
containers ρw that can be hosted on compute node [37].
Furthermore, before executing a container, a compute node
must download and decompress the images. As a result, we
utilize suncomp(h(a,whole)) to signify the uncompressed size
of whole image ha.

In the following subsections, we will introduce storage
model and delay model. For the sake of readability, the main
notations involved in our system and their descriptions are
summarized in Table II.

A. Storage Model

An image is composed of multiple compressed layers.
We define the set of layers in an image ha as Lha

=

Fig. 1. The proposed 3-tier edge computing application image caching
architecture.

TABLE II
LIST OF NOTATIONS

Notation Definition

M The set of edge areas
Wm,Um The set of compute nodes and users in edge area m

τw, fw
ρw

Storage space and CPU frequency of compute node w
Limited concurrent container number of compute node w

Sbm Cache space of local registry bm
pu Required number of CPU cycles of the task of user u
A,V The set of apps and versions in the system
h(a,v) The image of application a in version v
Lha The set of layers in an image ha

scomp

suncomp

The compressed size.
The uncompressed size.

C
h(a,v)

bm
Caching decision of registry bm to h(a,v)

Ea
w Assignment decision of compute node w to app a

Hbm
Hw

The set of images cached in registry bm
The set of images used for apps in compute node w

Ra,v
u Indicator denoting if user u requests for app a in version v

Ka
w,bm

Decision of pulling app a from registry bm to compute node
w

tpropu,w∗ Propagation delay between user u and connected compute
node w∗

tprop
w∗,w′ Propagation delay between connected compute node w∗ and

processing compute node w′

tpull
u,w′,a Time for compute node w′ to pull files of application a for

user u

t
(a,pri.)
w′,bm′

,

t
(a,non pri.)
w′,bm′

Time for compute node w′ to download the prioritized/non-
prioritized portion of application a image from registry bm′

tcreatea Time to launch application a
tproc
w′,u Processing time for compute node w′ to complete task for

user u
Da

u,m Response time of user u in edge area m toward app a
D̄a

u,m Expected response time of user u in edge area m toward
app a

Pa,v
u Probability of user u requesting app a in version v

5

{1, 2, ..., Lha
}. The compressed size of layer l in version v is

represented as scomp(lv) and the uncompressed size of layer l
is denoted as suncomp(lwhole). Here we introduce two binary
variables to respectively represent image caching and container
assignment decisions.

C
h(a,v)

bm
=

 1, if local registry bm caches image
ha in version v

0, otherwise
(1)

Ea
w =

{
1, if compute node w instantiates app a
0, otherwise (2)

The storage model varies between local registries and compute
nodes. In the case of a local registry, the set of cached
images is symbolized as Hbm = {h(a,v) | C

h(a,v)

bm
=

1,∀a ∈ A,∀v ∈ V}. For a compute node, the set of
images utilized by all running application services is desig-
nated as Hw = {h(a,whole) | Ea

w = 1,∀a ∈ A}. Assume
that we have a collection of images denoted as H1 =
{h(a1,v1), h(a2,v2), ..., h(an,vn)}. Then the union of layers can
be expressed as:

l union(H1) =
⋃

h∈H1

Lh (3)

Due to the fact that many container images share common
dependencies or libraries, layer sharing allows containers
to share the same underlying layers. In other words, when
multiple images share the same layers, only the layers that do
not exist on the node need to be pulled. Accordingly, the total
compressed size of a set of images H1 involving layer sharing
concept can be calculated as follows:

scomp(H1) =
∑

lv∈l union(H1)
scomp(lv) (4)

On the other hand, assuming we have another set of images
H2 = {h(a1,whole), h(a2,whole), ..., h(an,whole)} that has been
decompressed and stored in a compute node while launching
containers to provide services. We compute the total uncom-
pressed size of a set of images H2 involving layer sharing as
follows:

suncomp(H2) =
∑

lwhole∈l union(H2)
suncomp(lwhole) (5)

B. Delay Model

We start by assuming that a user initiates the request for a
single application within a time slot and introduce an auxiliary
binary variable Ra,v

u to represent the status of application
requests received from users:

Ra,v
u =

 1, if user u request for app a and
the task is requested for version v

0, otherwise
(6)

Our focus lies in measuring the response time including the
duration from when a user initiates a request for an application
service until the task is fully executed and the response is
returned to the user. It is assumed that users tend to connect
to a compute node with minimal propagation time. To indicate
which registry to download the required application packages

for a compute node, we introduce an additional decision
variable represented as follows:

Ka
w,bm =

1, if compute node w downloads

prioritized files of app a from
registry bm

0, otherwise

(7)

The delay model for the response time of a user comprises
four distinct types of delays. In the subsequent subsections,
we delve into an elaboration on the details of each component.

1) Propagation Time: tpropu,w∗ is the propagation delay be-
tween user u and connected compute node w∗. Since the
compute node a user connects to may not provide the target
service that a user requests for, tpropw∗,w′ denotes the time it
takes for forwarding the request from compute node w∗ to the
processing compute node w′. Additionally, it should be noted
that tpropw∗,w′ = 0 if w∗ and w′ refer to the same compute node,
which means the request can be processed in the originally
connected compute node, and do not have to be forwarded to
another compute node.

2) Image Pulling Time: The time required for a compute
node w′ to pull the necessary files for application a in order
to fulfill the request of user u is denoted as tpullu,w′,a. As for
the pulling time, we also consider the operation cost such
as compression, extraction, and verification. In addition, we
define t

(a,pri.)
w′,bm′

as the time taken by compute node w′ to
download the prioritized portion, i.e. all the files in partial
version of an image, of application a image from registry bm′ ,
and t(a,non pri.)

w′,bm′
as the time needed to download the remaining

non-prioritized files. The prioritized segment of an image can
be downloaded either from the appstore or local registries.
In the case where the prioritized part is obtained from the
appstore, the non-prioritized part is also sourced from the
appstore. However, if the prioritized portion is downloaded
from a local registry, the non-prioritized section can be re-
trieved from the same local registry only if the registry has
cached the whole version of the image. Otherwise, the non-
prioritized files should be downloaded from the appstore. Note
that if a user does not require the complete functionality of an
application, the response time does not include the download
time of non-prioritized files. As stated above, the image pulling
time can be derived as follows:

tpullu,w′,a(C,K,R) = Ka
w′,appstore · [t

(a,pri.)
w′,appstore +Ra,whole

u ·

t
(a,non pri.)
w′,appstore] +

∑
m′∈M

Ka
w′,bm′

· [t(a,pri.)w′,bm′
+ C

h(a,partial)

bm′
·

Ra,whole
u · t(a,non pri.)

w′,appstore + C
h(a,whole)

bm′
·Ra,whole

u · t(a,non pri.)
w′,bm′

]
(8)

3) Container Creation Time: We introduce tcreatea as the
time to launch application a after downloading the required
files from registries, e.g. the time of executing docker run.
Since creation time remains consistent, we set the time to
constant for each application a [15].

4) Processing Time: To determine the processing time tprocw′,u

for a compute node to complete the task assigned by user u.
Refer to [38], the processing time can be given as:

6

tprocw′,u =
pu
fw′

(9)

where pu represents the CPU cycles required for the given
task, and fw′ is the computation resource, expressed as the
CPU frequency, of the processing compute node w′.

Finally, we formulate the response time function of user
u in edge area m who requests the service of application a,
taking into account all the aforementioned components:

Da
u,m(C,E,K,R) = 2 · tpropu,w∗ + tpullu,w′,a(C,K,R)

+ tcreatea + 2 · tpropw∗,w′ + tprocw′,u (10)

where
w∗ = arg min

w∈Wm

(2 · tpropu,w)

and
w′ ∈ {Ea

w = 1 | ∀w ∈ W} (11)

where w∗ is the compute node a user originally connects to,
and w′ is the compute node that provides the requested service
to a user.

IV. PROBLEM FORMULATION

In this section, we will mathematically formulate the ob-
jective of our work, which aims to optimize the average
response time of users in multiple edge areas by performing
image caching, container assignment, and registry selection.
Due to the heterogeneous time scale and complexity involved
in image caching operation, as well as in real-time container
assignment and registry selection, we further decompose the
original problem into two subproblems to achieve our ultimate
goal.

A. Main Problem Formulation

Our objective is to minimize the average response time
of requests from all edge areas by determining the least
functional-based image cache decision of local registries (i.e.
C), container assignment decision of compute nodes (i.e.
E), and which registry should the compute node download
required application packages from (i.e. K).

We can formulate our optimization problem as defined
in (12), where constraint C1 ensures that duplicate cache
decisions are avoided in each local registry, allowing at most
one version of an application image to be cached in each
local registry. Constraint C2 limits the total size of all stored
application packages not exceeding available cache space
for each local registry. Constraint C3 describes the storage
limitation of a compute node, stating that the total image size
of all running applications should not exceed the available
storage space. Then, constraint C4 restricts the maximum
number of concurrent containers that can run on a compute
node at a time. Furthermore, constraint C5 ensures that an
application is deployed on a single compute node if there
is any user requests for it. Constraint C6 indicates that the
prioritized files of an application image should be downloaded
from a single registry if a compute node w is assigned to
instantiate an application a. Lastly, constraint C7 states that

if a compute node w is assigned to download packages of
application a from registry bm, then the application packages
should be cached in the registry.

min
C,E,K

1

|U|
∑

m∈M

∑
u∈Um

∑
a∈A

∑
v∈V

Ra,v
u ·Da

u,m(C,E,K,R)

(12)

s.t.

C1 :
∑
v∈V

C
h(a,v)

bm
≤ 1,∀a ∈ A,∀m ∈M

C2 : scomp(Hbm) ≤ Sbm ,∀m ∈M
C3 : suncomp(Hw) ≤ τw,∀w ∈ W

C4 :
∑
a∈A

Ea
w ≤ ρw,∀w ∈ W

C5 :
∑
w∈W

Ea
w = min(

∑
m∈M

∑
u∈Um

∑
v∈V

Ra,v
u , 1),∀a ∈ A

C6 : Ka
w,appstore+

∑
m∈M

Ka
w,bm = Ea

w,∀w ∈ W,∀a ∈ A

C7 : Ka
w,bm −

∑
v∈V

C
h(a,v)

bm
≤ 0,∀m ∈M,∀a ∈ A

Given the complexity of the original problem and the re-
quirement to prioritize the caching decision before determining
the compute node for an application to launch on and selecting
the appropriate package download location in real-time, we
decompose problem (12) into two subproblems. The first
subproblem optimizes the caching decision C for all local
registries, taking into account their available cache space,
application image information, and historical user information.
The second subproblem optimizes the container assignment E
and registry selection decision K based on the user requests,
network conditions, and the results of the caching.

B. Least Functional-based Caching Decision

We begin by providing an extensive elaboration of the
subproblem P1. Given the uncertainty of future user requests
for different applications, we replace the indicator of the
actual user request (i.e. Ra,v

u) with the historical probability
of a request (i.e. P a,v

u). We assume that a user’s application
preference remains relatively stable over time, and is highly
influenced by historical usage patterns. Suppose the current
time slot is denoted as T , we calculate the historical request
probability of user u for application a in version a in time
slot T according to historical information from previous t time
slots as follows:

P a,v
u =

1

t

T−1∑
t′=T−t

Ra,v
u (t′), ∀a ∈ A,∀u ∈ U,∀v ∈ V (13)

Since adjusting caching decision only affects image pulling
time, we substitute the actual response time of users (i.e. D)
with the expected pulling time value (i.e. t̄pull). However, as
the real download time of the application image is unknown in
advance, we attempt to adapt the original image pulling time.
To express the layer number that is necessary for downloading

7

the image of application a on compute node w, we take into
account the existing application images on the node. After
that, we proceed to normalize the layer number by dividing it
by the maximum layer numbers found in all the application
images using the following equation:

layer(w, a) = |Lha \
⋃

i∈Hw

Li| (14)

Likewise, the size that a compute node needs to download
for application a is shown in equation (15). Initially, a com-
pute node downloads the prioritized files, namely the partial
version, and offers the basic functionality to a portion of users,
while providing complete functionality to the remaining users
until the non-prioritized files are stored. Therefore, in the case
where the input type is equal to pri., we compute the size
required to download the partial version of the application
image ha on compute node w. On the other hand, if the input
type is non pri., it calculates the size of the remaining non-
prioritized portion of the image.

size(w, a, type) =

scomp(Hw ∪ h(a,partial))-scomp(Hw),

if type = pri.

scomp(Hw ∪ h(a,whole))-scomp(Hw ∪ h(a,partial)),

if type = non pri.

(15)

Because the actual download time of an application is
unknown, we try to generate a new value that can serve as
a substitute for the delay. Intuitively, there exists a strong
correlation between image size and pulling time. Based on
our experiment observations, we found that the number of
layers also influences download time. An image with a higher
layer number has a longer download time compared to one
with a lower layer number even when the size is the same.
This is because the Docker daemon in a compute node has
an upper limit on the number of simultaneous downloads,
and by default, it can concurrently fetch three layers of an
image concurrently. Furthermore, during a standard Docker
pull operation, the extraction and decompression process is
executed in a sequential manner, starting from the first layer
[39]. Accordingly, setting a higher concurrent layer download
limit will prolong the completion time of the first layer due
to the constrained bandwidth. It defers the decompression and
extraction process and results in a longer pulling time. As a
result, the delay is transformed into a new estimated value
by means of the subsequent equation, which considers the
measured RTT between compute node w and registry bm, the
download size of image files (15) and the cumulative operation
delay costed by layers (14) as follows:

Φ(w, bm, a, type) = RTTw,bm · size(w, a, type)

+ χ(w, a) (16)

Since after downloading a layer, the compute node needs to
decompress and verify the checksum to ensure the integrity.

We calculate the operation latency for processing decompres-
sion, extraction, and verification of checksum by referring to
[40] as the following equation:

χ(w, a) = θ · layer(w, a)(layer(w, a) + 1)

2

+ λ · layer(w, a) (17)

where θ = 0.001526 and λ = 0.03087, which is same as [40].
In the default container assignment, the edge area m∗a with

the highest request probability is selected to run a specific
application. Since edge area m∗a may have multiple compute
nodes, the expected image pulling time t̄pull is determined as
the average pulling time for all possible compute nodes in the
selected edge area. Let t̄pullu,a,appstore(P) denote the expected
image pulling time taken for all possible compute nodes
to download the image of application a from the appstore.
We change the original download time (e.g. t(a,pri.)w′,bm′

) to the
estimated value obtained through (16) and replace the actual
user request with the historical probability of the request by
using (13). The calculation can be performed as follows:

t̄pullu,a,appstore(P)=
1

|Wm∗a |
∑

w∈Wm∗a

[Φ(w, appstore, a, pri.)

+ P a,whole
u · Φ(w, appstore, a, non pri.)] (18)

We use t̄pullu,a,local(P) to represent the expected image pulling
time required to download the image from local registries.
Similarly, using the same principle as (18), we replace the
original download time and the actual user request as well.
Therefore, the equation can be expressed as follows:

t̄pullu,a,local(C,P) =
1

|Wm∗a |
∑

m′∈M

∑
w∈Wm∗a

[C
h(a,partial)

bm′

· Φ(w, bm′ , a, pri.) + C
h(a,partial)

bm′
· P a,whole

u

· Φ(w, appstore, a, non pri.) + C
h(a,whole)

bm′

· P a,whole
u · Φ(w, bm′ , a, non pri.)] (19)

If the expected image pulling time from local registries is
non-zero, we set the expected image pulling time t̄pull as the
minimum value between the expected image pulling time from
the appstore and the expected image pulling time from the
local registries. The equation is presented as follows:

t̄pullu,a (C,P) = t̄pullu,a,appstore(P), if t̄pullu,a,local(C,P) = 0

min(t̄pullu,a,appstore(P), t̄pullu,a,local(C,P)), otherwise
(20)

where
m∗a = arg max

m′∈M

∑
u∈Um′

∑
v∈V

P a,v
u (21)

After adapting from equation (12), we formally define the
subproblem P1, which focuses on minimizing the expected

8

Algorithm 1: Least Functional-based Image Caching
Decision

Input: Historical request probability P a,v
u , Registry storage

space Sbm

Output: Image caching decision C
1 Initialize C = {Ch(a,v)

bm
= 0| ∀m ∈M,∀a ∈ A, ∀v ∈ V}

2 Initialize scheduled← an empty list
3 Calculate popularity scorea,vm by (23), ∀a ∈ A, ∀v ∈ V
4 Sort popularity scorea,vm by value in descending order
5 foreach element in popularity score list do
6 if a in scheduled then
7 continue
8 end
9 if scomp(Hbm ∪ h(a,v)) ≤ Sbm then

10 C
h(a,v)

bm
← 1

11 Append a to scheduled
12 continue
13 end
14 if v = whole then
15 if scomp(Hbm ∪ h(a,partial)) ≤ Sbm then
16 C

h(a,partial)

bm
← 1

17 Append a to scheduled
18 end
19 end
20 end

image pulling time (i.e. t̄pull) for each potential application
request by determining the collaborative cache decision of all
local registries (i.e. C):

P1 : min
C

1

|U|
∑

m∈M

∑
u∈Um

∑
a∈A

∑
v∈V

P a,v
u · t̄pullu,m,a(C,P)

s.t. C1,C2 (22)

The subproblem is formulated as a 0-1 integer linear pro-
gramming problem, which is considered NP-hard and will be
proved in the later subsection.

To address this problem, we first define popularity score
by the following equation (23) for version v of application a
in edge area m based on the previous usage records and the
information of application images.

popularity scorea,vm = β ·

∑
u∈Um

P a,v
u

max
a′∈A,v′∈V,m′∈M

∑
u∈Um′

P a′,v′
u

+ γ · |Lha
|

max
a′∈A

|Lha′ |
+ (1− β − γ) ·

scomp(h(a,v))

max
a′∈A,v′∈V

scomp(h(a′,v′))

(23)

where β and γ are the weight coefficients between 0 and
1, which represents the importance of different factors. The
computation can be performed by each control node to obtain
the statistics in its edge area and they report the results to
the orchestrator. Specifically, when downloading images with
more layer numbers and larger sizes from different registries,
there will be notable variations in the time required to pull
the images. Conversely, when downloading images with fewer

layer numbers and smaller sizes, the time difference will not
be substantial. Consequently, in case of an equal number of
requests, the act of placing an image with a greater magnitude
in terms of size and layer number in a remote registry can
significantly increase pull time and has a notable impact on
the overall system, as opposed to an image with a smaller size
and lower layer number. Therefore, the popularity score takes
historical request probability, layer number, and the size of an
image into consideration.

In the proposed Algorithm 1, we first calculate a popularity
score for each application, version, and edge area (line 3).
Afterward, the values are sorted in descending order (line 4),
allowing higher-value applications and versions to be cached
in the desired local registry, provided there is sufficient space
available (lines 9-13). In addition, if the size of an application
image exceeds the available space of a local registry and the
image is in the whole version, we attempt to cache a smaller
version of the image (lines 14-19), i.e. in a partial version.

C. Edge-based Collaborative Container Assignment and Reg-
istry Selection Decisions

Next, our attention shifts towards defining the subproblem
P2, which entails the decisions of container assignment and
registry selection. In order to focus on the specific issue
at hand, we omit the consideration of the propagation time
between the user and the connected worker. This is justified
by the fact that the values of tpropu,w∗ are determined solely from
user location and there is no relevance to the decision-making
process of container assignment and registry selection. As a
result, we adapt the original delay model (10) to the following
form:

D̄a
u,m(E,K,R) = t̄pullu,w′,a(C,K,R)+tcreatea +2· t̄propw∗,w′+t

proc
w′,u

(24)
where w∗ and w′ maintain the same definitions as previously
denoted in (11), tcreatea is the application creation time, t̄propw∗,w′

represents the measured propagation time in the current time
slot, and the processing time tprocw′,u is calculated by equation
(9). Drawing upon the concept developed in (20), the expected
pulling time during the container assignment and registry
selection phase is adapted from (8) by changing the actual
pulling time to an estimated value and can be written as:

t̄pullu,w′,a(C,K,R)=Ka
w′,appstore · [Φ(w′, appstore, a,

pri.) +Ra,whole
u · Φ(w′, appstore, a, non pri.)]+∑

m′∈M
Ka

w′,bm′
· [Φ(w′, bm′ , a, pri.) + C

h(a,partial)

bm′
·

Ra,whole
u · Φ(w′, appstore, a, non pri.) + C

h(a,whole)

bm′
·

Ra,whole
u · Φ(w′, bm′ , a, non pri.)] (25)

Ultimately, we define the objective of P2 as minimizing
the average expected user response time, accomplished by
determining the container assignment E and registry selection

9

Algorithm 2: Edge-based Collaborative Container As-
signment and Registry Selection

Input: limited number of concurrent containers ρw, storage
space of compute nodes τw, computation resource of
compute nodes fw, network measurement RTT , user
request Ra,v

u , caching status C
h(a,v)

b

Output: container assignment decision E, registry selection
decision K

1 Initialize H∗w ← ∅,∀w ∈ W
2 Initialize E = {Ea

w = 0 | ∀w ∈ W, ∀a ∈ A}
3 Initialize K = {Ka

w,bm = 0 | ∀a ∈ A, ∀w ∈ W, ∀m ∈
M} ∪ {Ka

w,appstore = 0 | ∀a ∈ A, ∀w ∈ W}
4 UR = {a | Ra,v

u = 1, ∀a ∈ A, ∀v ∈ V, ∀u ∈ U}
5 foreach a ∈ UR do
6 Ba = {bm | C

h(a,v)

bm
= 1, ∀m ∈M, ∀v ∈

V} ∪ {appstore}
7 Calculate impacta by (27)
8 end
9 Sort UR by impacta in descending order

10 foreach a ∈ UR do
11 w′ ← null, b′ ← null, costa ← +∞
12 foreach w ∈ W do
13 if |H∗w|+ 1 ≤ ρw and

suncomp(H∗w ∪ {h(a,whole)}) ≤ τw then
14 tmpE ← E, tmpEa

w ← 1
15 cost, b←CalCost(a, Ba, w, C, tmpE, K,

R)
16 if cost < costa then
17 costa ← cost, w′ ← w, b′ ← b
18 end
19 end
20 end
21 Ea

w′ ← 1, Ka
w′,b′ ← 1

22 H∗w′ ← H∗w′ ∪ {h(a,whole)}
23 end
24 Function CalCost(a, Ba, w, C, tmpE, K, R):
25 foreach b ∈ Ba do
26 if b 6= appstore and

∑
v∈V

C
h(a,v)

b 6= 1 then

27 continue
28 end
29 tmpK ← K, tmpKa

w,b ← 1

30 costb =
∑

m′′∈M

∑
u∈Um′′

∑
v′′∈V

Ra,v′′
u ·

D̄a
u,m′′(C, tmpE, tmpK,R)

31 end
32 return minimal costb and b

K for all compute nodes:

P2 : min
E,K

1

|U|
∑

m∈M

∑
u∈Um

∑
a∈A

∑
v∈V

Ra,v
u · D̄a

u,m(C,E,K,R)

s.t. C3,C4,C5,C6,C7 (26)

which is classified as a 0-1 linear programming problem that
is NP-hard and will be proved in the later subsection.

To solve the problem, we first define the impact value for
application a by the following equation (27), which takes into
account the request probability within the current time slot,
the normalized layer number, and the normalized expected

size. The normalized expected size is obtained based on the
normalized image size and the request percentage of the
corresponding version.

impacta = δ ·

∑
v′∈V

∑
u∈U

Ra,v′

u

|U|
+ κ · |Lha

|
max
a′∈A

|Lha′ |
+

(1− δ − κ) ·
∑
v∈V

(
scomp(h(a,v))

max
a′∈A,v′∈V

scomp(h(a′,v′))
·

∑
u∈U

Ra,v
u∑

v′∈V

∑
u∈U

Ra,v′
u

)

(27)

where δ and κ are the weight factors ranging from 0 to 1,
which serves to quantify the significance of different factors.

Subsequently, we design novel Algorithm 2, in which UR
is denoted as the set formed by applications requested by
at least one user (line 4), and the impact value for each
application in it is calculated (lines 5-8). We sort UR by
impact values in descending order (line 9) so that applications
having a greater impact on the overall system performance
can be prioritized when scheduling. For each application a in
UR, we iterate through all compute nodes that are capable
of running application a to find out the compute node w′ and
registry b′ that require the minimal cost costa (lines 10-22) by
using function CalCost. In function CalCost (lines 24-32),
we assume that the container is assigned to compute node
w and we iterate through all the registers that contain the
image of application a to find out the register b that causes
the minimal cost when pulling the corresponding image. In
the proposed algorithm, we run through three for loops, which
leads to the complexity of O(|UR||W ||Ba|).

By running Algorithm 2, the system identifies the optimal
pair of compute node and registry that incurs the minimal cost
for assigning applications to a compute node and retrieving
the corresponding images from the registry. Notably, we
improve the download process of application images through
collaboration between local registries and the appstore, which
enables the separate download of the least functional part and
the remaining part of an image from different registries. Ad-
ditionally, the cost is computed by evaluating the cumulative
user response time made by the current decision.

D. Proof of NP-hardness

We can prove the NP-hardness of subproblem P1 via the
multiple knapsack problem (MKP): A set of knapsacks each
with a specific capacity is given and a set of items each
with a specific weight and value are given, in which we
need to find a disjoint set of items for each knapsack under
capacity limitation to optimize total values. We can think of
local registries as knapsacks with limited storage spaces and
application images as items with specific storage requirements
and costs. Since MKP is considered an NP-hard problem, the
NP-hardness of subproblem P1 is proved.

For subproblem P2, we can prove NP-hardness via multidi-
mensional knapsack problem (MDKP): A set of knapsacks
each with d-dimension capacity limits, and a set of items
each with a d-dimension capacity and a specific value is
given, in which we need to find a disjoint set of items for

10

Fig. 2. The system workflow of proposed LFPEC.

each knapsack under capacity constraints to optimize total
values. We can think of compute nodes as knapsacks with
multiple-dimension capacity limits and containers as items
with multiple-dimension capacity and costs. Due to the NP-
hardness of MDKP, subproblem P2 is also proved NP-hard.

E. System Workflow

The overall workflow of our proposed system LFPEC is
visualized in Fig. 2. During the image caching phase, the
orchestrator periodically updates the image caching decision
by solving P1. The decision is based on the storage space
of the local registries and historical user requests collected
by the control nodes in each edge area. Subsequently, the
orchestrator proactively distributes the caching decision back
to the control nodes. Upon receiving the commands, each
control node forwards them to the local registry, instructing it
to perform caching operations. In the container assignment and
registry selection phase, the orchestrator makes the decisions
by solving P2 based on the user requests and node information
such as computation resources and network measurements
obtained from the control nodes. The compute nodes then
instantiate the corresponding applications from the target reg-
istry, following the control messages sent by the control node.

V. EXPERIMENTAL RESULTS

In this section, we provide a comprehensive overview of
our experimental setup, including the descriptions of the
experimental environment, testbed implementation, utilization
of real data, and system parameters. Afterward, we evaluate the
performance of our proposed scheme with real-world datasets
on the testbed.

A. Experiment Setup

1) Testbed Setting: Our testbed comprises multiple ma-
chines, containing two Intel i7-8700K 6-core CPU servers,
one Intel i9-9900K 8-core GPU server, one Intel i7-11700K
8-core CPU server, and one i7-8559U 4-core CPU server. We

Fig. 3. An overview of our real-world testbed setup.

create virtual machines equipped with 4096MB of RAM and 2
virtual CPU cores to represent nodes. All nodes in our testbed
are operating on Ubuntu 18.04.6 LTS and are installed with
Kubernetes v1.24.3 [5], which handles the management and
deployment of containerized applications. Moreover, we have
implemented the edge-based collaborative lazy pulling mech-
anism, which supports efficient and flexible image retrieval
harnessing the collaboration between local registries and the
appstore, by modifying a widely-used traditional lazy pulling
open-source project called stargz snapshotter [41] in version
v0.13.0. For our experiments, we consider a system architec-
ture consisting of an orchestrator, an appstore, four control
nodes, three local registries, and three compute nodes. The
local registries and the appstore employ the Docker Registry
2.0 implementation [42] to store and distribute application
images. The three edge areas are geographically distributed
across Ming DA Hall and EE Building No.2 at National
Taiwan University, and Taoyuan City in Taiwan, each with
a control node, a local registry, and a compute node. In
addition, the orchestrator, a control node, and the appstore
are located in a separate edge area under Ming Da Hall,
distinguished by a distinct public IP address. We measure the
download throughput of each edge area using the NTU speed
test website. The download throughput is 96.17Mb/s in the EE
edge area, 113.16 Mb/s in the Taoyuan edge area, 92.3 Mb/s
in the Ming Da 1 edge area, and 101.17 Mb/s in the Ming
Da 2 edge area. Fig. 3 provides an overview of our testbed
setup. Moving forward, we conduct performance evaluations
using the aforementioned testbed configurations and real-world
datasets.

2) Dataset Description: With an eye to further validating
the performance of the proposed approach, we utilize the
real-world Tsinghua App Usage Dataset [43] to represent the
application usage behaviors of users in our experiment. The
original dataset includes usage records of total 1,000 users
and 2,000 applications which comprises user IDs, timestamps,
and app IDs. We extract the data from a specific time range,
preciously from 4/21 13:00:00 to 15:59:59, and then divide
this time range into 30-minute time slots, resulting in a total of
six time slots. From this data, we select the most 20 popular
applications and filter out the records of other applications.
We focus on active users who appeared in every time slot.

11

(a) Sparse (b) Medium (c) Dense

Fig. 4. Cache hit rate versus registry cache ratio in different application usage density.

Since a user may use multiple applications within a time
slot, we simplify the scenario by setting the application with
the highest number of requests from a user as his/her target
application in that specific time slot. After all the operations
above, we can obtain app usage records of 90 users, involving
20 applications, across the six time slots. We use the data of
the last time slot as the current requests, while the data of
other five time slots served as historical user requests.

To distribute the users among the edge areas, we assign
30 users to each edge area. We empirically set application
usage density to 0.45, 0.5, and 0.55 for sparse, medium, and
dense usage density scenarios. In the context of dense density,
more users with same application preferences are allocated to
the same edge area. While in the scenario of sparse density,
users with same application preferences are distributed more
thinly across the three edge areas. Moreover, we set the least
functional application request ratio to 0.55, indicating that
there are 55% of the tasks can be processed using a partial
application image for each application.

For the convenience of the experiment, we use the most
popular 20 images, which have been downloaded over a billion
times or at least 500 million times in Docker Hub [44] instead
of the actual applications from the Tsinghua App Usage
Dataset. The layers of each image were defined when they
were built in Docker. Before pushing all the images to the
appstore, we launch the containers for each application image
and record the file access order using stargz snapshotter [41]
until they are ready to provide services. This process allows us
to divide each image into prioritized files and non-prioritized
files. Since different applications have various performances,
we carefully determine the ready status for each application.
Further details can be found in Table III. Additionally, we
measure the container creation time by conducting 20 mea-
surements and take the average value as the time for each
application.

3) System Parameters: Refer to and modified from [45]
for our scenario, the cache capacity of each local registry is
configured to range from 10% to 30% of the total compressed
size of application images. On the other hand, the storage
space allocated to each compute node is set to 3GB. To
determine the limited concurrent number of containers that
can be executed on a compute node, we set the value to 7

TABLE III
LIST OF 20 SELECTED APP IMAGES

Image Name: tag Ready Status

ubuntu: focal-20220922 /bin/bash -c ”ls”
centos: 7.9.2009 /bin/bash -c ”ls”

debian: bookworm /bin/bash -c ”ls”
alpine: 3.16.2 /bin/sh -c ”ls”
redis: 7.0.5 log: Ready to accept connections

postgres: 14.5
log: database system is ready

to accept connections
mysql: 8.0.31 log: ready for connections
mongo: 6.0.2 log: Waiting for connections
python: 3.10.7 print(”hello”)
golang: 1.19.2 fmt.Println(”hello”)
node: 19.0.0 console.log(”hello”)

nginx: 1.22.0
log: Configuration complete;

ready for start up
httpd: 2.4.54 log: httpd -D FOREGROUND

tomcat:10.1-jdk17-temurin log: Server startup
openjdk: 20-jdk System.out.println(”Hello”)

eclipse-mosquitto: 2.0.15 log: mosquitto version 2.0.15 running
registry: 2.8.1 log: listening on [::]:5000

rabbitmq: 3.11.0 log: Server startup complete
busybox: 1.35.0 /bin/sh -c ”ls”
influxdb: 1.8.10 log: Listening for signals

by our real measurement. In the measurement, we attempt to
deploy as many MySQL applications as possible on a compute
node until the system crashes or the memory utilization is
higher than 80%. The required number of CPU cycles for
a task follows a uniform distribution within [1000, 1500]M,
and the CPU frequency of each compute node is fixed at 1G
CPU cycles/s [38]. The propagation time between users and
compute nodes are uniformly distributed within [1,2]ms [46].
Furthermore, the parameters for equations (16), (23), and (27)
are empirically set as (β, γ, δ, κ) = (0.6, 0.15, 0.6, 0.15) based
on the importance of each terms.

B. Compared Algorithms

In our performance evaluation, we compare our proposed
method LFPEC against the following five schemes:

1) Docker Hub: This scheme represents the typical scenario
where systems without private registries download application
images from remote cloud like [15] and [16]. In this scheme,
we download application images directly from Docker Hub

12

without utilizing lazy pulling. That is, all the tasks of users
can be processed until a compute node pulls a whole image
from Docker Hub. As for the container assignment and registry
selection, it calculates the total number of requests for each
application in each edge area, and the application with the
maximal value is assigned to the compute node of the target
edge area.

2) Appstore with traditional lazy pulling (Appstore-L):
In this scheme, all the compute nodes download application
images from the appstore using the traditional lazy pulling
method, which is also used in [7] and [23], without leveraging
nearby local registries. The container assignment and registry
selection scheme remains the same as the DockerHub scheme.

3) Most Popular (MP): This scheme starts caching process
with the most popular application and caches an application
image in the local registry of an edge area with the highest
historical requests unless the cache size of the target registry
is full. It is similar to one of the benchmarks compared in [10]
and [13]. For the container assignment and registry selection,
the total number of requests for each application in each
edge area is calculated first. After that, it greedily selects
an application with the highest value and chooses the pair of
compute node and registry with the lowest cost and sufficient
resources.

4) Most Popular with lazy pulling (MP-L): Similar to the
MP scheme, this scheme utilizes edge-based collaborative lazy
pulling but can only cache the whole image without partial
caching. The container assignment and registry selection pro-
cess remains the same as the MP.

5) Most Popular with partial caching and lazy pulling
(MP-PL): The scheme, unlike MP-L, allows for the caching
of partial versions of images and caches the most popular
version of applications. The container assignment and registry
selection process is identical to the MP.

C. Analysis of Cache Hit Rate Performance

The cache hit rate is calculated by dividing the total number
of user requests that the processing compute nodes can down-
load the required application packages from the local registry
in the same edge area, by the total user requests.

1) The impact of cache size ratio: In terms of the impact
of cache size ratio, Fig. 4 shows how the cache hit rate
changes with varying cache size ratios of each registry. First,
it is evident that the overall cache hit rate of our proposed
algorithms is much higher than other compared algorithms.
This can be attributed to our approach that better utilizes
the storage space by partially caching the least functional
images and flexibly selecting the version of images to cache.
In addition, it can be observed that the cache hit rates of the
MP, MP-L, and MP-PL schemes increase with the cache size
ratio, as more images can be cached in the local registries.

2) The impact of edge-based collaborative partial caching:
Regarding the impact of edge-based collaborative partial
caching, schemes such as MP and MP-L, which can only cache
the whole version of images, show decreased flexibility and
leads to lower cache hit rates when the cache size is smaller.
The MP-PL scheme consistently reaches a higher cache hit

ratio than whole caching schemes when the registry cache
size ratio is below 20% due to the adoption of partial caching.
Furthermore, our proposed scheme achieves the highest cache
hit ratio among all the other schemes and demonstrates a
stronger inclination to fully utilize the available cache space.

To evaluate the stability, we examine the performance under
different application usage scenarios. That is, adjusting the
density of users with same application preferences in edge
areas. Our proposed scheme reliably achieves the highest
cache hit ratio in these diverse scenarios when compared with
the baselines.

D. Analysis of Average User Response Time Performance

Fig. 5 illustrates the average response time of 20 iterations
of different algorithms under different cache size ratios. The
subfigures in different scenarios show that the average re-
sponse time will be reduced when the registry cache size ratio
increases. Moreover, with a denser application usage density,
the value of the average response time will converge faster. The
impact of distinct factors will be illustrated in detail below.

1) The impact of cache size ratio: As the cache size
ratio increases, the average response time decreases because a
larger number of images can be cached in the local registries.
Therefore, compute nodes are given increased opportunities to
retrieve application packages from a closer registry.

2) The impact of edge-based collaborative lazy pulling:
The impact of edge-based collaborative lazy pulling is evident
when comparing schemes that do not utilize lazy pulling,
such as DockerHub and MP, with schemes that employ the
lazy pulling method. It is obvious that the two schemes have
a longer average user response time compared with other
schemes. The schemes with lazy pulling demonstrate signif-
icantly reduced average response time, as they can respond
to users by downloading only a portion of the application
images, resulting in a shorter waiting time. Moreover, our
proposed scheme further enhances the performance of lazy
pulling by collaboratively utilizing local registries for down-
loading application images instead of solely relying on the
same source as Appstore-L scheme. In summary, compared
to MP, DockerHub, and Appstore-L, our proposed scheme
outperforms the average user response time by an average of
50.8%, 40.7%, and 23.7%, respectively.

3) The impact of least functional-based partial caching:
Additionally, the impact of least functional-based partial
caching is examined. Our proposed algorithm outperforms
MP-L 12.1% on average. We leverage space utilization by
partially caching the least functional version of images, elim-
inating the need to store the whole images in local registries,
which results in reduced average response time. However,
we observe that MP-PL performs worse than MP-L as the
registry cache size ratio increases. It is because an inadequately
designed partial caching mechanism may degrade the response
time owing to a longer pulling time for downloading the non-
prioritized part of an image from the appstore. Moreover, when
the target registry lacks sufficient space to store the most
popular application packages, MP-PL wastes the remaining
cache space and results in a longer average user response

13

(a) Sparse (b) Medium (c) Dense

Fig. 5. Average user response time versus registry cache ratio in different application usage density.

time. In our algorithm, we address this issue by alternatively
caching the least functional version of the application image
and making effective use of the remaining space.

An inherent limitation of the MP-PL is that it solely
considers the popularity of applications and their versions
when deciding where to cache the packages. However, it
overlooks the fact that the time difference in downloading
the least functional version of images from different registries
is often shorter compared to retrieving the whole version
of images. The advantages gained from deploying smaller-
sized with fewer layers images may be compromised by
the potential increase in pulling time caused by larger-sized
images with a greater number of layers. We make up this
by jointly considering the popularity, image size, and layer
number of the images to prioritize the scheduling of versions
and applications that have a higher impact on the system. The
results demonstrate that, on average, our proposed algorithm
can perform better than the MP-PL by 16.3%.

Similarly, we demonstrate the superior performance of our
proposed algorithm against other baseline algorithms under
different application usage density.

VI. CONCLUSIONS

In this paper, we formulate the problem of image caching,
container assignment, and registry selection in edge com-
puting where geographically distributed local registries cache
application images, while compute nodes provide services to
users. The primary objective of our study is to minimize the
average response time experienced by users. To address the
problem, we propose a novel least functional-based partial
caching algorithm and an innovative edge-based collaborative
lazy pulling algorithm leveraging the concept of cooperation
between the appstore and local registries. In order to validate
the effectiveness of our proposed algorithms, we conduct ex-
tensive experiments on a real-world testbed and using the real
data of user application usage and popular images in Docker
Hub. The results demonstrate that the proposed algorithms
achieve the highest cache hit rate when compared to all the
other baseline algorithms. Specifically, they reveal an average
reduction in the user response time by 40.7%, 23.7%, 50.8%,
12.1%, and 16.3%, respectively, compared with DockerHub,
Appstore-L, MP, MP-L and MP-PL algorithms.

In our future work, we decide to deploy an appropriate
number of containers instead of only one container based on
user requests, where a load balancing mechanism for reducing
task completion time will also be incorporated. Additionally,
besides only considering system scenario with no running
applications on compute nodes, continuous-time requests can
be explored and container migrations based on their popularity
can be discussed in the future.

VII. ACKNOWLEDGEMENT

Hung-Yu Wei is grateful for the funding support by National
Science and Technology Council (NSTC) of Taiwan under
Grant 113-2628-E-002-032-.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young,
”Mobile edge computing—A key technology towards 5G”,
ETSI White Paper, no. 11, pp. 1-16, Sep. 2015.

[2] D. Sabella, V. Sukhomlinov, L. Trang, S. Kekki, P. Paglierani,
R. Rossbach, X. Li, Y. Fang, D. Druta, F. Giust et al., “Devel-
oping software for multi-access edge computing,” ETSI white
paper, vol. 20, pp. 1–38, 2019.

[3] Y. Chiang, et al., ”Management and Orchestration of Edge
Computing for IoT: A Comprehensive Survey,” IEEE Internet
of Things Journal, 2023.

[4] C. Babcock, ”Containers Explained: 9 Essentials
You Need To Know”, InformationWeek. [Online].
Available: https://www.informationweek.com/it-strategy/
containers-explained-9-essentials-you-need-to-know.

[5] T. L. Foundation. Kubernetes. [Online]. Available: https://
kubernetes.io.

[6] O. Oleghe, “Container placement and migration in edge com-
puting: Concept and scheduling models,” IEEE Access, vol. 9,
pp. 68 028–68 043, 2021.

[7] T. Harter et al., ”Slacker: Fast Distribution with Lazy Docker
Containers”, Proc. USENIX Conf. File and Storage Tech., pp.
181-95, Feb. 2016.

[8] C.-C. Lin, Y. Chiang, and H.-Y. Wei, “Multi-service edge
computing management with multi-stage coalition game task
offloading,” IEEE Transactions on Network and Service Man-
agement, vol. 21, no. 3, pp. 3278–3291, 2024.

[9] Z. Chen, Z. Zhou and C. Chen, ”Code caching-assisted compu-
tation offloading and resource allocation for multi-user mobile
edge computing”, IEEE Trans. Netw. Serv. Manag., vol. 18, no.
4, pp. 4517-4530, Dec. 2021.

[10] Y. Hao, M. Chen, L. Hu, M. S. Hossain and A. Ghoneim,
”Energy efficient task caching and offloading for mobile edge
computing”, IEEE Access, vol. 6, pp. 11365-11373, 2018.

https://www.informationweek.com/it-strategy/containers-explained-9-essentials-you-need-to-know
https://www.informationweek.com/it-strategy/containers-explained-9-essentials-you-need-to-know
https://kubernetes.io
https://kubernetes.io

14

[11] H. Jeon, S. Shin, C. Cho and S. Yoon, ”Multi-Agent Learning-
based Package Caching in Serverless Edge Computing,” Int.
Conf. Inf. Commun. Technol. Converg. (ICTC), pp. 400-402,
2022.

[12] H. Jeon, S. Shin, C. Cho and S. Yoon, ”Deep reinforcement
learning for qos-aware package caching in serverless edge
computing”, IEEE Global Commun. Conf. (GLOBECOM), pp.
1-6, 2021.

[13] X. Ma, A. Zhou, S. Zhang and S. Wang, ”Cooperative service
caching and workload scheduling in mobile edge computing”,
IEEE Conf. Comput. Commun. (INFOCOM), pp. 2076-2085,
Jul. 2020.

[14] J. Xu, L. Chen and P. Zhou, ”Joint service caching and task
offloading for mobile edge computing in dense networks”, Proc.
IEEE INFOCOM Conf. Comput. Commun., pp. 207-215, 2018.

[15] J. Lou, H. Luo, Z. Tang, W. Jia and W. Zhao, ”Efficient
container assignment and layer sequencing in edge computing”,
IEEE Trans. Services Comput., vol. 16, no. 2, pp. 1118-1131,
Mar. 2022.

[16] S. Fu, R. Mittal, L. Zhang and S. Ratnasamy, ”Fast and efficient
container startup at the edge via dependency scheduling”, Proc.
3rd USENIX Workshop Hot Top. Edge Comput., pp. 1-7, 2020.

[17] B. Gao, Z. Zhou, F. Liu and F. Xu, ”Winning at the Starting
Line: Joint Network Selection and Service Placement for Mobile
Edge Computing,” IEEE Conf. Comput. Commun. (INFOCOM),
pp. 1459-1467, 2019.

[18] B. Tang, F. Guo, B. Cao, M. Tang and K. Li, ”Cost-aware De-
ployment of Microservices for IoT Applications in Mobile Edge
Computing Environment,” IEEE Trans. Netw. Serv. Manag.,
2022.

[19] H. Sami, H. Otrok, J. Bentahar and A. Mourad, ”AI-Based Re-
source Provisioning of IoE Services in 6G: A Deep Reinforce-
ment Learning Approach,” IEEE Trans. Netw. Serv. Manag., vol.
18, no. 3, pp. 3527-3540, Sept. 2021.

[20] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo and A. Y. Zomaya,
”Exploring layered container structure for cost efficient mi-
croservice deployment”, Proc. IEEE Conf. Comput. Commun.
(INFOCOM), pp. 1-9, 2021.

[21] H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim and H. Jin, ”Gear:
Enable efficient container storage and deployment with a new
image format”, Proc. IEEE 41st Int. Conf. Distrib. Comput.
Syst., pp. 115-125, 2021.

[22] H. Li, Y. Yuan, R. Du, K. Ma, L. Liu and W. Hsu, ”DADI:
Block-level image service for agile and elastic application
deployment”, Proc. USENIX Annual Technical Conf. (ATC), pp.
727-740, 2020.

[23] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast
container provisioning on the edge and over the WAN,” Proc.
19th USENIX Symp. Netw. Syst.e Des. Implementation (NSDI),
pp. 35–50, 2022.

[24] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek and H. Jin,
”Online collaborative data caching in edge computing”, IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 281-294, Feb.
2020.

[25] C. Wang, D. Feng, S. Zhang and Q. Chen, ”Video caching
and transcoding in wireless cellular networks with mobile edge
computing: A robust approach”, IEEE Trans. Veh. Technol., vol.
69, no. 8, pp. 9234-9238, Aug. 2020.

[26] A. Lekharu, A. P. S. Chauhan, A. Sur, and M. Patra, “Re-
inforcement learning-based adaptive bitrate caching at mec
server,” IEEE Transactions on Network and Service Manage-
ment, vol. 21, no. 3, pp. 3292–3304, 2024.

[27] Z. Teng, J. Fang, and Y. Liu, “Combining lyapunov optimization
and deep reinforcement learning for d2d assisted heterogeneous
collaborative edge caching,” IEEE Transactions on Network and
Service Management, vol. 21, no. 3, pp. 3236–3248, 2024.

[28] Q. Jia, R. Xie, H. Lu, W. Zheng and H. Luo, ”Joint Optimiza-
tion Scheme for Caching, Transcoding and Bandwidth in 5G
Networks with Mobile Edge Computing,” Proc. IEEE 5th Int.

Conf. Comput. Commun. (ICCC), pp. 999-1004, 2019.
[29] A. Mehrabi, M. Siekkinen and A. Ylä-Jaaski, ”QoE-Traffic

Optimization Through Collaborative Edge Caching in Adaptive
Mobile Video Streaming,” IEEE Access, vol. 6, pp. 52261-
52276, 2018.

[30] Y. Chiang, C. -H. Hsu and H. -Y. Wei, ”Collaborative Social-
Aware and QoE-Driven Video Caching and Adaptation in Edge
Network,” IEEE Trans. Multimedia, vol. 23, pp. 4311-4325,
2021.

[31] H. Zhang, W. Lin, R. Xie, S. Li, Z. Dai, and J. Z. Wang, “An
optimal container update method for edge-cloud collaboration,”
Software: Practice and Experience, vol. 54, no. 4, pp. 617–634,
2024.

[32] H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang,
H. Wang, and S.-J. Park, “Rainbowcake: Mitigating cold-starts
in serverless with layer-wise container caching and sharing,” in
Proceedings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, Volume 1, 2024, pp. 335–350.

[33] ”IEEE Standard for Edge/Fog Manageability and
Orchestration,” IEEE Std 1935-2023, pp.1-68, doi:
10.1109/IEEESTD.2023.10186301.

[34] T. Chen, Y. Chiang, J. Wu H. Chen, C. Chen and H. Wei, ”IEEE
P1935 Edge/Fog Manageability and Orchestration: Standard and
Usage Example,” Proc. IEEE Int. Conf. Edge Comput. (EDGE),
2023.

[35] Y. Chiang, C.-H. Hsu, G.-H. Chen, and H.-Y. Wei, “Deep q-
learning-based dynamic network slicing and task offloading in
edge network,” IEEE Transactions on Network and Service
Management, vol. 20, no. 1, pp. 369–384, 2023.

[36] H.-T. Chen, Y. Chiang, and H.-Y. Wei, “Edge computing re-
source management for cross-camera video analytics: Workload
and model adaptation,” IEEE Access, vol. 12, pp. 12 098–
12 109, 2024.

[37] Z. Tang, J. Lou and W. Jia, ”Layer Dependency-Aware Learning
Scheduling Algorithms for Containers in Mobile Edge Comput-
ing,” IEEE Trans. on Mob. Comput., vol. 22, no. 6, pp. 3444-
3459, June 2023.

[38] A. Zhou, S. Li and S. Wang, ”Task Offloading and Resource
Allocation for Container-enabled Mobile Edge Computing,”
IEEE Int. Conf. Services Comput. (SCC), pp. 222-232, 2021.

[39] A. Ahmed and G. Pierre, ”Docker Container Deployment in Fog
Computing Infrastructures,” 2018 IEEE Int. Conf. Edge Comput.
(EDGE), pp. 1-8, 2018.

[40] Li, Sisi, et al. ”Commutativity-guaranteed docker image recon-
struction towards effective layer sharing.” Proceedings of the
ACM Web Conference, pp. 3358-3366, 2022.

[41] Containerd. Stargz snapshotter. [Online]. Available: https://
github.com/containerd/stargz-snapshotter.

[42] Docker Inc. Distribution. [Online]. Available: https://github.
com/distribution/distribution.

[43] D. Yu, Y. Li, F. Xu, P. Zhang and V. Kostakos, ”Smartphone app
usage prediction using points of interest,” Proc. ACM Interact.
Mobile Wearable and Ubiquitous Technol., vol. 1, no. 4, pp.
1-21, 2018.

[44] Docker Inc. Docker Hub container image library — app con-
tainerization. [Online]. Available: https://hub.docker.com/.

[45] L. Zhao, H. Li, N. Lin, M. Lin, C. Fan, and J. Shi, ”Intelligent
Content Caching Strategy in Autonomous Driving Toward 6G,”
IEEE Trans. on Intell. Transport., vol. 23, no. 7, pp. 9786-9796,
July 2022.

[46] A. Yousefpour, G. Ishigaki and J. P. Jue, ”Fog Computing:
Towards Minimizing Delay in the Internet of Things,” 2017
IEEE Int. Conf. Edge Comput. (EDGE), pp. 17-24, 2017.

https://github.com/containerd/stargz-snapshotter
https://github.com/containerd/stargz-snapshotter
https://github.com/distribution/distribution
https://github.com/distribution/distribution
https://hub.docker.com/

15

Chiao-Cheng Chen received the B.S. degree in
computer science from National Yang Ming Chiao
Tung University, Hsinchu, Taiwan, in 2021, and the
M.S. degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 2023. Her
research interests include edge computing, resource
scheduling, 5G and container technology.

Yao Chiang received the B.S. degree and the M.S.
degree in management information systems from
National Pingtung University of Science and Tech-
nology (NPUST), Pingtung, Taiwan, in 2014 and
2016, respectively. He received the Ph.D. degree in
electrical engineering at National Taiwan University
(NTU) in 2021, and he is currently a postdoctoral re-
search fellow in NTU. His research interests include
data mining, machine learning and mobile commu-
nications design for multi-access edge computing
systems.

Yu-Chieh Lee received the B.S. degree in elec-
trical engineering from National Taiwan University
(NTU), Taiwan, in 2023. She is currently pursuing
the M.S. degree in electrical engineering at NTU.
Her research interests include edge computing and
resource allocation.

Hung-Yu Wei is a Professor in Department of Elec-
trical Engineering and Graduate Institute of Commu-
nications Engineering, National Taiwan University.
Currently, he is the Director of Graduate Institute
of Communications Engineering and Chair of IoT
Research Center. He served as Interim Department
Chair and Associate Chair in Department of Electri-
cal Engineering during 2019˜2022. He received the
B.S. degree in electrical engineering from National
Taiwan University in 1999. He received the M.S.
and the Ph.D. degree in electrical engineering from

Columbia University in 2001 and 2005 respectively. He was a summer intern
at Telcordia Applied Research in 2000 and 2001. He was with NEC Labs
America from 2003 to 2005. His research interests include next-generation
wireless networks, IoT, and fog/edge computing.

He received the K.T. Li Distinguished Young Scholar Award 2009 from
ACM Taipei/Taiwan Chapter in 2012, Excellent Young Engineer Award from
the Chinese Institute of Electrical Engineering in 2014, Wu Ta You Memorial
Award from MOST in 2015, and Outstanding Research Award from MOST
in 2020. He was also recognized with the NTU Excellent Teaching Award
three times. He serves as Chair of IEEE 1935 working group for edge/fog
management and orchestration standard and Chair of IEEE 1934 Working
Group for edge/fog computing and networking architecture. He is an Associate
Editor for IEEE IoT Journal and IEEE IoT magazine. He was the Chair of
IEEE VTS Taipei Chapter during 2016˜2017.

	Introduction
	Related Work
	Caching in Edge Computing
	Container Assignment and Registry Selection
	Container Startup Acceleration
	Summary

	System Model
	Orchestrator
	Control Node
	Appstore
	Local Registry
	Compute Node

	Storage Model
	Delay Model
	Propagation Time
	Image Pulling Time
	Container Creation Time
	Processing Time

	Problem Formulation
	Main Problem Formulation
	Least Functional-based Caching Decision
	Edge-based Collaborative Container Assignment and Registry Selection Decisions
	Proof of NP-hardness
	System Workflow

	Experimental Results
	Experiment Setup
	Testbed Setting
	Dataset Description
	System Parameters

	Compared Algorithms
	Docker Hub
	Appstore with traditional lazy pulling (Appstore-L)
	Most Popular (MP)
	Most Popular with lazy pulling (MP-L)
	Most Popular with partial caching and lazy pulling (MP-PL)

	Analysis of Cache Hit Rate Performance
	The impact of cache size ratio
	The impact of edge-based collaborative partial caching

	Analysis of Average User Response Time Performance
	The impact of cache size ratio
	The impact of edge-based collaborative lazy pulling
	The impact of least functional-based partial caching

	Conclusions
	Acknowledgement
	Biographies
	Chiao-Cheng Chen
	Yao Chiang
	Yu-Chieh Lee
	Hung-Yu Wei

