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Abstract—Facing the emergence of 6G and the rapid increase
in electric vehicles (EVs), smart parking lots providing real-
time services like EV charging have become essential. Edge
computing, due to its proximity to end devices, offers low
latency and high bandwidth, but its limited resources necessitate
efficient allocation. We present a parking lots scenario with edge
computing system offering four key services: Supply Equipment
Communication Controller, charging space detection, monitoring,
and video streaming, along with their QoE models and cor-
responding estimation models. We predict system requests for
the next time slot and employ the Maximum-chosen algorithm
and Collaborative Optimal Decision Search method to optimize
service deployment and assignment, maximizing QoE values and
resource efficiency. Simulation results validate that we can obtain
request status that is more similar to real requests by prediction
and the Collaborative Optimal Decision Search method can
generate optimal service assignment strategy within different
methods.

Index Terms—edge computing, resource allocation, QoE opti-
mization, electric vehicle, smart parking lot

I. INTRODUCTION

As the era of 6G [1] approaches, the proliferation of AI and
IoT applications will lead to a surge in data generation, while
sufficient bandwidth, data transmission speed, and quality of
experiences (QoE) must be maintained. Concurrently, the high
growth rate of EVs [2] necessitates efficient infrastructure,
particularly for smart parking lots offering real-time services
like EV charging.

To conquer the above issues brought by 6G and the need
for parking lots for EVs, edge computing [3] can be a
splendid solution due to its characteristics such as extreme user
proximity, ultra-low latency, and high bandwidth, which can be
taken advantage by real-time services for EV charging while
maintaining end devices QoE. However, compared with cloud
computing, resources equipped by edge servers are limited so
efficient resource allocation and utilization have always posed
challenges for edge computing.

So far, there is some research related to applications of edge
computing for parking spaces. [4] proposed an infrastructure
that utilized edge computing nodes to receive and process
data of vehicles for accurate parking spot positioning and user
status detection. [5] proposed federated learning-based parking
space estimation with edge computing nodes and parked
vehicles. Moreover, there is also research on electric vehicle
charging and edge computing, for example, [6] proposed a
model based on a stacked auto encoder neural network at edge
platform to predict the load on EV charging stations. However,

these studies often lack comprehensive integration of services
within a smart EV parking lot.

Motivated by the above issues, we have done the following
work in this paper:

1) Propose a scenario consisting of parking lots and an edge
computing system architecture by following IEEE 1935
standard.

2) Implement four frequently used services and formulate
their QoE models and estimation QoE models.

3) Predict requests from end devices in the next time slot
to decide on service assignments and deploy them in
advance using the proposed Maximum-chosen algorithm
or Collaborative Optimal Decision Search algorithm for
maximizing total QoE values and fast service provisions.

The remainder of this paper is organized as follows. We
introduce our scenario and architecture in Section II. We define
our problem formulation and sub-problems and propose our
solutions in Section III. In Section IV, we show our simulation
results. Moreover, we conclude the paper in Section V.

II. SYSTEM MODEL

In this paper, we introduce a smart parking lot scenario
utilizing the edge/fog framework proposed in [7]–[9], which
is formed by a 3-level architecture, including computer-level,
control-level, and orchestrator-level defined in IEEE 1935
standard. Furthermore, we also specify and implement four
constantly used services in the scenario and define their QoE
models for further QoE maximization strategies.

The proposed scenario shown in Fig. 1 contains a whole
edge system architecture with three edge areas E = {X,Y, Z}
formed by three 3-story parking lots and managed by an
edge/fog orchestrator (EFO). Each parking lot is composed
of one control node, three compute nodes (one on each floor),
and several end devices. The four major components in the
system architecture will be introduced as follows:

a) End devices: Mainly include electric vehicle owners’
mobile devices and all electric vehicle charging stations in the
system, which are the components that request services. There
are several and a fixed number of charging stations on each
floor of a parking lot. The set of end devices in the whole
system is denoted as U = {1, 2, ......, U}.

b) Compute node: The computer-level entity that handles
practical computing tasks. In our scenario, it is responsible for
executing and providing services, which will be mentioned
in detail in the following paragraph, to end devices. The set



Fig. 1. The proposed system scenario and architecture.

of compute nodes in the whole system is denoted as C =
{1, 2, ......, C}.

c) Control node: The control-level entity to manage
and coordinate compute-level entities, which indicate compute
nodes. It collects request and resource information from com-
pute nodes in the same edge area and sends it to the EFO
in our scenario. Furthermore, it also sends control messages
from EFO to below compute nodes.

d) EFO: The orchestrator-level entity for the main man-
agement and orchestration of the whole edge system, which
is composed of several management and orchestration compo-
nents. In our scenario, the component collects a global view
of the whole edge system from all control nodes and runs the
proposed algorithm mentioned in Section III to predict future
requests, make service deployment and assignment decisions,
and send control messages to all edge areas.

In addition, we implement services and propose their QoE
models for further optimization decisions as follows:

a) Supply equipment communication controller (SECC)
service: Service defined in standard ISO 15118 and required
by a charging station to keep communications with the electric
vehicle communication controller (EVCC) on an EV before
and within the charging process. The QoE model of service
SECC request by end device u and runs on compute node c
is defined as below:

QSECC
c,u =

{
1

1
n

∑n
i=1(RTTc,u+tSECC

i )
if no timeout

−1 if timeout
(1)

, in which RTTc,u represents the round-trip time between
compute node c and end device u, n represents the total request
number in the charging process, and tSECC

i represents the pro-
cessing time of the ith request. If the value of RTTc,u+tSECC

i

for any i exceeds the V 2G EV CC Msg T imeout value
defined in ISO 15118 standard, we consider it a timeout event.

b) Charging space detection (CSD) service: Service im-
plemented with MobilenetV2 model to detect if there is a car
in the charging space. Its QoE model is defined as below:

QCSD
c,u =β × 1

1
n

∑n
i=1(RTTc,u + tCSD

i )
+ (1− β)× 0.72

(2)

, in which β and 1 − β are the weight factors that represent
the importance of the two metrics, and 0.72 is the accuracy
value referenced from [10].

c) Charging space monitoring (CSM) service: Service
implemented with OpenCV Haar cascade classifiers for face
recognition to ensure electric vehicles’ security during charg-
ing processes. Its QoE model is defined as below:

QCSM
c,u = γ × 1

1
n

∑n
i=1(RTTc,u + tCSM

i )
+ (1− γ)× 0.9624

(3)

, in which γ and 1−γ are the weight factors, and the accuracy
value 0.9624 is referenced from [11].

d) Video streaming (VS) service: Service which can
stream video to end devices while the car owner is waiting
for the charging process to finish. Its QoE model is referenced
and modified from [12] as below:

QV S
c,u = αXu − (1− α)Ia

= αXu − (1− α)(RTTc,u + tV S)
(4)

, in which α and 1− α are the weight factors, Xu represents
the resolution of the video for end device u, and Ia represents
the initial waiting time, which is equal to the round-trip time
RTTc,u plus the initial processing time tV S .

III. PROPOSED METHOD AND ALGORITHM

In this section, we define value vsc,u given by an end device
u served by service s on compute node c at time slot t as
below:

vsc,u(t) = priors ×Rs
u(t)×Qs

c,u (5)

, where priors indicates the priority and the importance
factor of service type s in the four kinds of services S =
{SECC,CSD,CSM,V S}, Rs

u(t) is a boolean value indi-
cating whether the end device u in time slot t has requested
for service type s and Qs

c,u represents the corresponding
QoE value given by end device u. Our main objective is to
maximize the summation of v values in total q time slots. We
split the problem into two sub-problems due to different time
dimensions, where the first sub-problem predicts the requests
from all end devices in the system in the next time slot based
on historical data, and the second sub-problem does the service



deployment and assignment decisions according to the request
probabilities predicted by the first sub-problem.

A. Main Problem Formulation
Our objective is to achieve the most efficient utilization of

system resources, which is to maximize the total value v in
q system time slots under the constraints of CPU, memory,
network resources of compute nodes, and uplink, and downlink
capacities of end devices. Since vsc,u is the comprehensive
value that takes service priority, request probability, and QoE
into consideration, the bigger the value vsc,u, the more signifi-
cance it has for the system. Therefore, our objective function
can be written as below:

max
D

q∑
t=0

∑
u∈U

∑
c∈C

∑
s∈S

vsc,u(t)× dsc,u(t) (6)

s.t.

C1 :
∑
s∈S

∑
u∈U

τsc,u(t) < τc,∀c ∈ C

C2 :
∑
s∈S

∑
u∈U

ωs
c,u(t) < ωc,∀c ∈ C

C3 :
∑
s∈S

∑
u∈U

dlsc,u(t) < ulc,∀c ∈ C

C4 :
∑
s∈S

∑
u∈U

ulsc,u(t) < dlc,∀c ∈ C

C5 :
∑
s∈S

∑
c∈C

ulsc,u(t) < ulu,∀u ∈ U

C6 :
∑
s∈S

∑
c∈C

dlsc,u(t) < dlu,∀u ∈ U

C7 :
∑
c∈C

dsc,u(t) <= 1

, where dsc,u(t) is a boolean value which indicates whether
we deploy service s on compute node c and assign it to end
device u at time slot t, and D is the set consists of all dsc,u
values.

C1 and C2 limit the total usage of CPU and memory
of all services on a compute node to be less than the total
number of CPU and memory on the compute node, which is
τc and ωc. Moreover, C3 and C4 constrain the total data speed
transmitted to and received from end devices to be less than
the compute node’s uplink capacity and downlink capacity.
C5 and C6 constrain the total data speed transmitted to and
received from services executing on compute nodes to be less
than the end device’s uplink capacity and downlink capacity.
Besides, C7 ensures that end device u’s request for service s
will only be accepted by at most one compute node.

B. Sub-problem 1. Request Prediction
Assume that the request status in each parking lot has a cer-

tain level of periodicity. We can calculate request probability
in time slot t through the historical request data and below
equation:

P s
u(t) =

1

w

t−1∑
x=t−w

Rs
u(x) (7)

, where P s
u(t) is the probability that end device u requests for

service s, and w is the hyper-parameter indicating the time
window size, which can be suitably modified based on the
periodicity of the request status of an edge area.

C. Sub-problem 2. Service Assignment Decision

Our goal for the second sub-problem is to assign services
to appropriate compute nodes to serve specific end devices in
advance to maximize the sum of estimated v values at time
slot t, which is defined as:

vsc,u(t) = priors × P s
u(t)×Qs

c,u (8)

Compare with Eq. 5, actual request value Rs
u is replaced

by request probability value P s
u , and actual QoE value Qs

c,u

is replaced by estimated QoE value Qs
c,u so that our sub-

objective function can be represented as follow and with the
same resource constraints in formula 6:

max
D

∑
u∈U

∑
c∈C

∑
a∈S

vsc,u(t)× dsc,u(t) (9)

To estimate the QoE value in the next time slot, we need to
define estimated QoE models for the four services referencing
Eq. 1∼4 since we are unable to know the actual service
condition in the next time slot. Below are estimated QoE
models of:

• SECC service:

QSECC
c,u = (1− probtimeout)×

1

RTTc,u + tSECC

+ probtimeout × (−1)
(10)

, where probtimeout is the average timeout probability,
RTTc,u is the average round-trip time between end device
u and compute node c, and tSECC is the average process
time of the SECC service.

• CSD service

QCSD
c,u = β × 1

RTTc,u + tCSD
+ (1− β)× 0.72 (11)

, where tCSD is the average process time of the charging
space detection service.

• CSM service

QCSM
c,u = γ × 1

RTTc,u + tCSM
+ (1− γ)× 0.9624

(12)
, where tCSM is the average process time of the charging
space monitoring service.

• VS service

QV S
c,u = αX ′

u − (1− α)(RTTc,u + tV S) (13)

, where X ′
u is the previous resolution value used by the

video streaming service for the end device in the same
charging space as end device u, and tV S is the average
process time of the video streaming service.

To achieve our sub-objective, we propose Maximum-chosen
algorithm and Collaborative Optimal Decision Search (CODS)
method.



a) Maximum-chosen Algorithm: Related pseudo code is
shown in Alg. 1, in which we first calculate all possible v
values, then every time pick the maximum value and check
if resources are enough. If enough resources are available, we
assign end device u to service s running on compute node c
and accumulate the total value.

Algorithm 1 Maximum-chosen Algorithm
1: Input: P s

u , ∀s ∈ S, ∀u ∈ U
2: Output: Total value value and service deployment and

assignment decisions D
3: Let value← 0
4: Initialize V = {vsc,u = priors×P s

u×Qs
c,u | ∀s ∈ S,∀c ∈

C, ∀u ∈ U}
5: Initialize D = {dsc,u = 0 | ∀s ∈ S, ∀c ∈ C,∀u ∈ U}
6: Initialize RC = {rcc = {τc, ωc, dlc, ulc} | ∀c ∈ C}
7: Initialize RE = {reu = {dlu, ulu} | ∀u ∈ U}
8: while There exist non-zero value in set V do
9: Find maximum value vs

′
c′,u′ in set V

10: if CheckResourceEnough(s′, c′, u′) then
11: value← value+ vs

′
c′,u′

12: ds
′

c′,u′ ← 1
13: for c ∈ C do
14: vs

′
c,u′ ← 0

15: end for
16: else
17: vs

′
c′,u′ ← 0

18: end if
19: end while
20: function CHECKRESOURCEENOUGH(s, c, u)
21: if all value in (rcc − {τs, ωs, uls, dls}) > 0 and all

value in (reu − {dls, uls}) > 0 then
22: rcc ← rcc − {τs, ωs, uls, dls}
23: reu ← reu − {dls, uls}
24: return True
25: else
26: return False
27: end if
28: end function

b) Collaborative Optimal Decision Search (CODS)
Method: Besides Maximum-chosen algorithm, we also pro-
posed CODS method based on the integer linear programming
(ILP) method. Same as Maximum-chosen algorithm, we first
initialize set V = {vsc,u = priors ×P s

u ×Qs
c,u | ∀s ∈ S,∀c ∈

C,∀u ∈ U}, and define a set of binary decision variables
D = {dsc,u | ∀s ∈ S, ∀c ∈ C,∀u ∈ U}, in which variable
dsc,u=1 represents that the request from end device u for
service s is assigned to compute node c and dsc,u=0 indicates
the opposite. Subsequently, we can formulate our ILP problem
with formula 9 as the objective function and C1 ∼ C7 defined
in formula 6 as constraints.

Given the potentially large number of variables in decision
set D, which scales with the number of charging spaces and
end devices, solving the ILP problem might incur significant
computational time. To mitigate this, we impose a 5-minute

time limit during simulations. Consequently, the obtained
solution may be near-optimal rather than optimal.

IV. SIMULATION RESULTS

In this section, we show our environmental parameter set-
tings during simulations. Subsequently, we present simulation
results using request datasets of the three edge areas within 120
time slots, including request status from a total 90 charging
spaces evenly distributed on all floors of all parking lots. We
compare the similarities between real requests and requests
with and without predictions, and also compare the simulation
results using Maximum-chosen algorithm, CODS Method, and
DEUA-H algorithm [13].

A. Environmental Parameter settings
In Table. I, we present the environmental parameters and

their corresponding values utilized during the simulations. The
top four parameters denote service type priorities, with SECC
service for charging assigned the highest priority. Charging
station detection and monitoring services share the same pri-
ority level, followed by video streaming, which is deemed the
least critical. Additionally, parameters associated with service
resource usage represent average values for one end device,
which are organized from the monitoring data, while we also
record average processing time for all types of services.

TABLE I
PARAMETER SETTINGS.

Parameter Value Parameter Value
priorSECC 4/9 priorCSD 2/9

priorCSM 2/9 priorV S 1/9

probtimeout 0.01 tSECC 9 (ms)
τSECC 0.79 (core/user) ωSECC 366 (MB/user)
dlSECC 86 (kbps/user) ulSECC 21 (kbps/user)
β 0.9 tCSD 5244.8 (ms)
τCSD 0.23 (core/user) ωCSD 430 (MB/user)
dlCSD 2.1 (kbps/user) ulCSD 327 (kbps/user)
γ 0.7 tCSM 768.2 (ms)
τCSM 0.17 (core/user) ωCSM 49.3 (MB/user)
dlCSM 2.9 (kbps/user) ulCSM 1.09 (Mbps/user)
α 5/7 tV S 0 (ms)
τV S 0.0033 (core/user) ωV S 14.1 (MB/user)
ulV S 59 (kbps/user) τc 4 (cores)
ωc 32 (GB) ulc 1 (Gbps)
dlc 1 (Gbps) ulu 100 (Mbps)
dlu 100 (Mbps) w 6

B. Effects of doing request prediction
To generate request status as the input of Maximum-chosen

algorithm and CODS method, we can do request prediction us-
ing the equation mentioned in Section III.B, or we can choose
to use the request from the previous time slot. We compare the
request status of these two methods and calculate their Mean
Square Error (MSE) values with the real requests, which are
presented in Fig. 2. The MSE values between real requests
and request probabilities with prediction are constantly smaller
than the other, indicating that it is more suitable to be the input
for further service assignment decisions.



Fig. 2. MSE between real requests and request probabilities, requests from
last time slot.

C. Comparison of results using different algorithm

In this section, we compare our approaches with DEUA-H
[13]. We adapt DEUA-H by selecting service-end device pairs
iteratively, following the order of SECC,CSD,CSM,V S
for services and selecting end device sequentially from edge
area X,Y, and Z. Then, we assign each pair to the compute
node with the highest vsc,u value.

Using Maximum-chosen, CODS, and DEUA-H algorithms
with request probabilities and real requests as inputs, as shown
in Fig. 3 and 4, we find that CODS consistently performs
better than others and achieves better resource efficiency by
optimizing the total value v. Furthermore, DEUA-H which
lacks priority consideration in assigning service-end device
pairs to compute nodes, mostly performs worse compared to
the Maximum-chosen algorithm.

Fig. 3. Total value v by using Maximum-chosen/CODS/DEUA-H with request
probabilities as input.

V. CONCLUSION

In this paper, we present a setup involving three smart
parking facilities equipped with an edge system. We identify
and evaluate four commonly utilized services within parking
lots, establishing their QoE metrics and devising correspond-
ing estimation models. By analyzing historical data, we de-
termine request probabilities for upcoming time slots across
all charging spaces. Subsequently, employing the Maximum-
chosen algorithm and CODS method, we can optimize service
deployment and assignment, thereby minimizing service wait
times and maximizing resource efficiency. Our simulations
demonstrate that with prediction, we can generate request

Fig. 4. Total value v by using Maximum-chosen/CODS/DEUA-H with real
request as input.

status similar to the real requests and CODS is the best
solution among different methods for service deployment and
assignments.
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