
Collaborative Vehicular Edge Computing Design for
Delay-Sensitive Applications

Jing-Yang Voon, Yao Chiang, Cheng-Rui Jia, Hung-Yu Wei
Department of Electrical Engineering, National Taiwan University, Taiwan

Abstract—Vehicular edge computing (VEC) has become a
promising solution in electric vehicle (EV) utilization. However,
the uneven geographical distribution of service requests may lead
to load imbalances among edge servers in different clusters.
Thus, the integration of task offloading (TO) and resource
allocation (RA) is pivotal for achieving optimal performance in
edge computing systems. In this study, we explore an efficient
collaborative scheme for task offloading and resource allocation
across multiple edge network areas. Initially, we model the Multi-
Edge System Delay (MESD) by considering the average end-to-
end delay in the system. Subsequently, we introduce the concept
of request redistribution using a load-balancing approach to
simplify the joint TO & RA problem into a manageable RA
problem. Our algorithm mathematically formulates the MESD
model and employs a heuristic method to address the formulated
problem. Finally, we have compared our proposed work with
several baselines and the results confirm the effectiveness of the
proposed mechanism.

Index Terms—Edge Computing, Computational Offloading,
Multi-Server Resource Allocation, Electric Vehicle.

I. INTRODUCTION

The emergence of 6G networks is revolutionizing commu-
nication with advanced capabilities and significantly impacted
the EV industry, fostering enhanced connectivity for smart
and efficient electric transportation systems. However, due to
limited resources, vehicles may experience a slight decline
in performance when processing these applications locally.
In this context, Edge Computing(EC), which aims to provide
computing resources at network edges has become a promis-
ing solution in EV utilization, offering real-time processing
capabilities at the network’s edge for improved data analysis
and swift decision-making [1]. Drawing on EC principles like
dynamic resource allocation and low-latency processing, EC in
EVs seamlessly integrates with the broader network, boosting
electric transportation system efficiency and effectiveness.

Through the implementation of Vehicular Edge Computing
(VEC), computational tasks within the system can be intel-
ligently offloaded to nearby Edge Computing Servers (ECS).
This strategic offloading enhances processing efficiency, lead-
ing to a notable reduction in end-to-end delay compared
to conventional cloud-based approaches. Consequently, this
approach not only optimizes system performance but also
elevates users’ Quality of Experience (QoE).

The convergence of TO and RA has become a focal
point in academia and industry. Prior studies [2]–[4] have
primarily focused on task-offloading strategies using remote
servers but often neglected the challenge posed by the un-
even geographical distribution of service requests, leading

to load imbalances among edge servers in different clusters.
Addressing this, collaborative edge-edge cooperation models
[5], [6] have emerged, allowing tasks offloaded to high-load
edge servers to be further delegated to adjacent low-load
servers. A distinctive feature of our VEC scenario lies in the
consideration of multiple network areas with varying inter-
propagation speeds. The overarching objective is to minimize
the MESD, highlighting the nuanced and sophisticated nature
of our proposed solution.

This paper makes notable contributions in the following key
aspects:

1) A comprehensive MESD model is introduced to opti-
mize the system’s average latency and end-to-end delay.

2) In addressing the intricate challenge of joint TO and
RA, a TO policy is devised aligned with the IEEE 1935
standard.

3) The proposed framework is rigorously validated through
simulations based on real-world traffic datasets and a
sample application service.

The following sections are structured as follows: Section II
introduces the proposed system model. Section III details algo-
rithm design intricacies, while Section IV covers simulations
and evaluations. The paper concludes in Section V, summa-
rizing findings and suggesting future research directions.

II. SYSTEM MODEL

This section begins by introducing the collaborative cluster-
cluster system architecture. Subsequently, it delves into the
detailed processes of TO and RA within the VEC system.
Finally, the paper outlines the MESD model considered in the
context of this study.

A. Network Model

Depicted in Fig. 1, our study delves into a hierarchical VEC
network, extending across diverse network areas and closely
reflecting the architecture proposed in [7], [8]. Within this
setup, compute nodes, representing the compute-level entity
defined in the IEEE 1935 standard, serve as fundamental
processing elements with various processor types. Meanwhile,
control nodes, denoting the control-level entity defined in
IEEE 1935, manage resources within their designated edge
areas. Notably, compute nodes handle service execution, while
control nodes collect data for decision-making in our scenario.
At the core of this architecture, the Edge/Fog Orchestrator
(EFO), functioning as the orchestrator-level entity for main
management and orchestration per the IEEE 1935 standard,

Fig. 1. The topology of the proposed VEC network scenario.

plays a pivotal role in making RA decisions to optimize MESD
across the system.

Within our system, key components include an EFO, a
network of Edge Clusters denoted as C = {1, 2, ..., c}, and
a set of Edge Applications represented by A = {1, 2, ..., a}.
Additionally, diverse resource types denoted collectively as
R = {1, 2, ..., r}, are available across the entire system. The
system further accommodates requests from all vehicles in the
area of the ith cluster seeking the kth application’s service,
with Reqik serving as a metric for the number of requests
soliciting the kth application’s service covered by Edge Cluster
i. Notably, within each cluster’s coverage area, the requesting
services exhibit variations in processing delay, data size, and
distinct inter-propagation speeds across clusters.

B. Computing & Communication Model

1) Computing Model: In acknowledging the influence of
allocated computing resources on the performance of a de-
ployed machine/container, we draw insights from recent ad-
vancements, such as those presented in [9]. Various meth-
ods, including linear regression and Support Vector Machine
(SVM) models, have been proposed to assess the intricate
relationship between allocated computing resources and the
overall performance of a Docker container. In light of this, we
conceptualize the task computing delay as a function of the al-
located resource, denoted by ηk. Specifically, ηk represents the
function capturing the average processing delay of application
k under diverse allocations of computing resources.

Within the framework of processing delay functions, we
make the simplifying assumption that these values will be
truthfully provided by the service provider of the application.
However, it is essential to recognize that the availability and
distribution of computing resources differ across each edge
cluster. Consequently, we impose the following constraints to
ensure a realistic depiction of the system’s dynamics:

C1 :
∑
k

Resjkr ≤ Res′jr, j ∈ C, k ∈ A, r ∈ R (1)

which implies that the aggregate RA decisions for all
applications within a given cluster j must not surpass the
available resources allocated to that cluster.

2) Communication Model: The computational tasks re-
ceived within cluster i can be dynamically distributed among
other edge clusters, necessitating consideration of the asso-
ciated task transmission delay. Similar to the work [10], we
introduce the term ”unit propagation delay” denoted as eij
between clusters i and j, which can be readily obtained
through periodic measurements. Additionally, we assume that
the average data size dk of a deployed application k is provided
by its service provider. Consequently, we formulate the model
for average transmission delay for a single request being
forwarded from cluster i to cluster j as the following:

tij = eij · dk, i ∈ C, j ∈ C, k ∈ A (2)

C. MESD Model
In contrast to the several approaches in the recent works

of [11], we aim to improve the system delay in a multi-edge
scenario, with a particular emphasis on reducing latency for
each user. The overarching concept involves identifying an
adequately representative average delay for the entire system.
Consequently, we calculate the average delay by considering
all clusters, aiming to capture a holistic perspective of the
system’s performance.

D = avg([Di]) =

∑
i∈C(Di ·

∑
k∈A Reqik)∑

i∈C

∑
k∈A Reqik

(3)

where D represents the average delay in the overall system,
Di is the average delay in cluster i and Reqik is the amount
of requests of application k in cluster i.

In the aforementioned context, we introduced the term
average delay for a single cluster Di without a precise def-
inition. The average cluster delay is derived by calculating
the overall delay through weighted averaging of the product
of the forwarded requests amount Nijk and its experienced
delay, which is the summation of processing delay DPij

and
propagation delay DTij

in our case. The detailed definition of
the average delay for cluster i is specified below:

Di = avg([DPij
+DTij

]) =

∑
j∈C(Tij + Pij)∑

k∈A Reqik
, i ∈ C (4)

where the variable Tij is the result of multiplying the
transmission delay between cluster i and cluster j by the

number of requests forwarded from cluster i to j. On the
other hand, Pij is the product of the processing delay and the
number of requests received in cluster i, which is currently
being handled in cluster j.

The propagation term, Tij , has the physical meaning of
cumulative propagation delay for the requests being forwarded
from cluster i to j. Acknowledged by eq.(2), this relationship
can be expressed by incorporating the summation term for the
number of requests for application k being forwarded from
cluster i to j, namely Nijk.

Tij = eij ·
∑
k∈A

(Nijk · dk), i ∈ C, j ∈ C (5)

On a contrasting note, the processing term, Pij , can be
acquired by utilizing the performance function ηk provided by
each service provider. This function takes RA decisions and
concurrent serving requests as inputs and outputs a processing
delay. Similarly, we introduce the summation term to calculate
the overall case, encompassing the total processing delay for
requests forwarded from cluster i to j.

Pij =
∑
k∈A

(ηjk ·Nijk), i ∈ C, j ∈ C (6)

At this juncture, we have transformed the problem of
optimizing the overall effective delay, D, into a TO problem.
The formulations are articulated through the crucial term Nijk

which holds significance and will be elaborated upon in the
subsequent section.

III. PROPOSED METHOD AND ALGORITHM

In this section, we commence by presenting the concept
of redistributing requests within the system. Subsequently, we
mathematically formulate the forwarding of requests employ-
ing a fixed forwarding policy. Finally, we integrate and address
the problem by employing our proposed heuristic algorithm for
an effective solution.

A. Collaborative Task Offloading(CTO)

In this section, we initially introduce the redistribution
of request density through a load-balancing method. The
fundamental concept is straightforward: clusters with a higher
allocation of resources should handle a greater volume of
requests. Consequently, the redistributed requests reflect the
quantity that each cluster should effectively manage. The
detailed formulation is presented below.

Req′jk =
|Rjk|∑

n∈C |Rnk|
∑
n∈C

Reqnk (7)

|Rjk| =
√∑

l∈R

R2
jkl

Here, Req′jk symbolizes the redistributed quantity of re-
quests for application k that ought to be managed in clus-
ter j. Significantly, the formulated redistributed requests are
functions of RA decisions that will dynamically adjust their

value based on varying RA decisions. The term |Rjk| denotes
the allocated resource amount in cluster j for application k.
Given the availability of multiple resource types for allocation,
we formulate this term by employing the concept of vector
magnitude. In other words, we can consider each available
resource type as an independent vector, and quantify the re-
source amount by calculating the square root of the sum of the
squares of each term. In addition, the notation

∑
n∈C Reqnk

straightforwardly signifies the total requests for application k
across the entire system.

B. Requests Forwarding Formulation
Having obtained the redistributed requests, we can itera-

tively compute the forwarding amounts. We adopt a greedy
approach to derive an optimal forwarding strategy, prioritizing
clusters with higher inter-propagation speeds in the iteration
process. In this approach, we consistently compute the self-
offloaded part at the initial, where tasks are processed at
the local cluster without forwarding, given the absence of
propagation delay between any cluster and itself.

Niik =

{
Req′ik, Reqik ≥ Req′ik
Reqik, Reqik < Req′ik

(8)

Afterward, we formulated the rest of the terms in the
ascending order of propagation speed considering a condi-
tional term. The formulated relation considers two conditions:
the clusters forwarding requests must have available request
slots, and the cluster to which requests are being forwarded
should have excess requests. The function enters the second
part only if both conditions are simultaneously valid, namely
conditionvalid. In this second part, we establish another set
of conditional values which the formulation always acquires
the smaller term between the available request slots x on the
cluster forwarding requests and the remaining excess requests
y on the receiving cluster. The detailed algorithm for the
formulation of the above mathematical relations is shown as
the following in Algorithm.1.

Nijk =

{
0, Conditioninvalid

min(x, y), Conditionvalid

(9)

conditioninvalid : Req′ik +
∑

β∈C−prevCj

Niβk ≥ Reqik

||Req′jk ≤ Reqjk +
∑

α∈C−prevCi

Nαjk;

conditionvalid : else;

x = Req′jk −Reqjk −
∑

α∈C−prevCi

Nαjk;

y = Reqik −Req′ik −
∑

β∈C−prevCj

Niβk;

It’s important to note that the formulated strategy above is
not rigid; rather, it is a dynamic function. This function takes
an RA strategy as its input and produces a greedy forwarding
policy under our assumptions.

Algorithm 1 Dynamical Requests Forwarding
Input: [Reqjk], [Req′jk], [eij]
Output: [Nijk]

1: Initialize [Nijk] as a 3D-array filled with zeros.
2: Initialize prevCn as a 2D-array filled with zeros.
3: for i loop through each cluster do
4: for k loop through each application do
5: Niik = Req′ik
6: Append i into prevCi

7: Sort [eij] in ascending order
8: for i, j loop through [eij] do
9: if i! = j then

10: for k loop through each application do
11: Compute Nijk using Eq. 9
12: Append j, i into prevCi, prevCj respectively
13: return [Nijk]

C. Collaborative Resource Allocation

In our discussion thus far, we have not addressed the
resource constraints on each cluster and have yet to incorporate
them into the mathematical relations defined above. While
numerous mathematical approaches can solve optimization
problems, the challenge lies in discarding invalid solutions due
to resource constraints.

To address this, we introduce a filtering mechanism simu-
lated by a sigmoid function σ(ax). By adjusting the coefficient
a to a higher value, the sigmoid function approximates a unit-
step function of u(x). In this way, we can incorporate the
sigmoid function into our defined model to adhere to the
resource constraints. Unlike a unit-step function, a sigmoid
function lacks any discontinuous points, making it computa-
tionally straightforward.

To formulate the system delay equation with resource con-
straint, we simply add a conditional term to the delay model.

D∗ = D +Ω
∑

γi∈Consts

σ(aγi) (10)

σ(ax) =
1

1 + e−ax

where D∗ represents the average system delay under re-
source constraint, Ω serves as a hyperparameter simulating
significant delay when allocation decisions exceed resource
constraints, and Consts refers to the set of resource con-
straints within the system. For instance, the constraint function
of 50 available CPUs in edge area 1, CPU1 ≤ 50 can be
expressed as follows:

σ(aγ1) =
1

1 + e−a(CPU1−50)

Having discussed the formulated problem, it becomes appar-
ent that it can be represented as a function taking RA decisions
and requests distribution as inputs, and producing the average
system delay as an output. With this mathematical definition

established, various methods can be utilized to address this
optimization problem.

To streamline the calculation, we propose a heuristic so-
lution that leverages Particle Swarm Optimizer (PSO) for
optimization. The formulated average delay model serves as
the fitness function within the PSO solver. In this context,
each particle in the PSO solver corresponds to a potential RA
strategy. Utilizing the system delay model can easily translate
these RA strategies into average system delays, optimizing the
overall system delay.

IV. PERFORMANCE EVALUATION METHODOLOGY

This section provides an overview of the simulation en-
vironment, encompassing system parameters, methodology,
and the dataset employed. To comprehensively evaluate the
performance of our proposed scheme, we conducted extensive
simulations across various scenarios. The parameters varied
including the variance of requests distributed among the clus-
ters and the amount of cumulative requests distributed among
clusters.

The simulation parameters were carefully chosen following
prior research, particularly studies referenced in [10] and
[12]. Results from each scenario were averaged over 150
simulations to ensure robustness. In our default settings, we
employed 3 clusters, each equipped with 2 resource types:
CPUs randomly ranging from 5 to 15, and memory randomly
ranging from 4GB to 10 GB. Additionally, the default data size
of applications ranged randomly from 1MB to 5MB, while unit
propagation delays fell within the range of 1MB/s to 20MB/s.
Finally, the processing efficiencies of deployed applications
were set to default values as follows by simulating the linear
regression model acknowledged in [9].

ηik =
Req′ik

k1 · CPUik
+

Req′ik
k2 ·Memoryik

(11)

Here, k1 and k2 represent the weighted coefficients of
each allocated resource and their default values are randomly
ranging from 10 to 25 respectively. It is important to note that
this performance model can be adjusted as needed to align
with the characteristics of the deployed applications in real-
world scenarios. For the sake of efficiency in our simulations,
we have opted for a simplified model, understanding that it
provides a foundational framework for our evaluation.

V. PERFORMANCE EVALUATION RESULTS

This section delves into assessing the proposed framework’s
performance, focusing on the average system delay. To gauge
the quality of RA decisions, we consider the following bench-
marks:

1) No Task Offloading(NTO): This refers to the non-
collaborative edge system where no cluster-cluster for-
warding is allowed within the framework.

2) Game-based Task Offloading(GTO): This represents a
non-collaborative framework where each cluster makes
rational decisions solely for its own benefit. The idea of
the scheme is embodied in [10].

3) Collaborative Task Offloading(CTO): This is the dynam-
ical task offloading algorithm proposed in this work.

Fig. 2. Average Delay with the increase of task amount.

1) Average Delay With Different Task Amount: In Fig.2,
we observe the comparison of the average delay optimized
by our proposed algorithm with two reference schemes as
the total requests in the overall system increase. Across
all schemes, there is a notable trend of increasing average
delay with the rising request volume. Particularly striking is
the consistently higher average delay in the NTO scheme
than others. This disparity primarily stems from non-uniform
resource and request distribution among clusters, resulting
in certain clusters exhibiting lower proficiency in local task
processing. Consequently, this exacerbates the overall delay of
the system. Conversely, our proposed CTO scheme stands out
as the most effective. It optimizes resource utilization while
ensuring system task delay tolerance and holding time limits,
ultimately minimizing the overall average delay in the system.

Fig. 3. Average delay with the increase of variance of requests distribution.

2) Average delay With Different Variance Of Requests Dis-
tribution: In Fig.3, we modify the variance of the requests
distribution to create a less uniform distribution among the
clusters, while keeping the other parameters at default values.
We observe that the average delay increases for all schemes
except our proposed scheme as the variance of the request
distribution rises. This is attributed to the growing variance
in request distribution, which amplifies the processing delay
for a larger portion of requests in the more heavily loaded

clusters, while marginally reducing delays for requests in less
burdened clusters. Furthermore, our proposed approach, which
prioritizes collaborative task offloading, effectively addresses
this challenge and consistently outperforms other schemes.

VI. CONCLUSION

This paper explores the challenge of joint task offloading
and resource allocation. By integrating propagation and pro-
cessing delay, we formulate a MESD model, representing the
average delay in the system. Our proposed solution involves
redistributing requests among edge areas to address this issue.
Simulation results demonstrate the superiority of our algo-
rithm over alternative approaches, consistently achieving lower
delays as task volume increases and maintaining consistent
delays despite variations in request distribution among clus-
ters. In future research, we will explore scenarios involving
microservices and diverse network topologies, thoroughly dis-
cussing their potential limitations and scalability.

VII. ACKNOWLEDGEMENT

Hung-Yu Wei is grateful for the funding support by National
Science and Technology Council (NSTC) of Taiwan under
Grant 112-2622-8-002-021- and 112-2628-E-002-025-.

REFERENCES

[1] Y. Chiang et al., ”Management and Orchestration of Edge Computing
for IoT: A Comprehensive Survey,” in IEEE Internet of Things Journal,
vol. 10, no. 16, pp. 14307-14331, 15 Aug.15, 2023.

[2] M. Najm, M. Patra, and V. Tamarapalli, “Cost-and-delay aware dynamic
resource allocation in federated vehicular clouds,” IEEE Trans. Veh.
Tech- nol., vol. 70, no. 6, pp. 6159–6171, Jun. 2021.

[3] Y. Chiang, C. -H. Hsu, G. -H. Chen and H. -Y. Wei, ”Deep Q-Learning-
Based Dynamic Network Slicing and Task Offloading in Edge Network,”
in IEEE Transactions on Network and Service Management, vol. 20, no.
1, pp. 369-384, March 2023.

[4] L. H. Phuc, M. Kundroo, D. -H. Park, S. Kim and T. Kim, ”Node-
Based Horizontal Pod Autoscaler in KubeEdge-Based Edge Computing
Infrastructure,” in IEEE Access, vol. 10, pp. 134417-134426, 2022.

[5] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan and M. Xiao, ”Asynchronous
Deep Reinforcement Learning for Collaborative Task Computing and
On-Demand Resource Allocation in Vehicular Edge Computing,” in
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no.
12, pp. 15513-15526, Dec. 2023.Magnetics Japan, p. 301, 1982].

[6] T. X. Tran and D. Pompili, ”Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” in
IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856-
868, Jan. 2019.

[7] “IEEE standard for edge/fog manageability and orchestration,” IEEE
standard 1935-2023, 2023.

[8] ETSI, “Mobile edge computing (mec); framework and reference archi-
tecture,” ETSI, DGS MEC, standard 3, 2016.

[9] K. Ye, Y. Kou, C. Lu, Y. Wang and C. -Z. Xu, ”Modeling Appli-
cation Performance in Docker Containers Using Machine Learning
Techniques,” 2018 IEEE 24th International Conference on Parallel and
Distributed Systems (ICPADS), Singapore, 2018.

[10] W. Fan et al., ”Game-Based Task Offloading and Resource Allocation
for Vehicular Edge Computing With Edge-Edge Cooperation,” in IEEE
Transactions on Vehicular Technology, vol. 72, no. 6, pp. 7857-7870,
June 2023.

[11] Y. -J. Ku, P. -H. Chiang and S. Dey, ”Real-Time QoS Optimization
for Vehicular Edge Computing With Off-Grid Roadside Units,” in IEEE
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11975-11991,
Oct. 2020.

[12] W. Fan et al., ”Joint Task Offloading and Resource Allocation for
Vehicular Edge Computing Based on V2I and V2V Modes,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp.
4277-4292, April 2023.

