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ABSTRACT
Multi-camera systems are now widely employed across numerous domains. The exponential growth of
deep learning has simplified the implementation of advanced video analytics applications. While current
systems strive to enhance live video analytics from several aspects, they overlook the potential degradation
in performance resulting from dynamic content changes, such as the variation in the quantity and types of
objects of interest over a period and across different cameras. The authors introduce Workload and Model
Adaptation (WMA), a two-stage resource allocation strategy for a three-tiered, cross-camera video analytics
system. This system not only supports model fine-tuning but also ensures workload balance. Notably,
both the system architecture and control workflow fully comply with the IEEE 1935 edge standard. This
paper delves into the GPU utilization performance of a vehicle re-identification application and examines
the workload dynamics spanning multiple cameras. Furthermore, the challenges related to multi-process
execution are explored. The system is evaluated using a commonly employed dataset and a popular open-
source project. The results demonstrate that the proposed design surpasses the baseline and enhances the
overall throughput and latency across cameras within the system.

INDEX TERMS Continuous learning, edge computing, re-identification, resource allocation, offloading,
video analytic.

I. INTRODUCTION

In recent years, cameras have been widely deployed at many
places, such as road intersections, grocery stores, and the
university campus. The rapid advancement of deep learning
has made it increasingly convenient to deploy powerful video
analytics applications. Furthermore, the utilization of multi-
ple cameras further expands the range of applications that can
be supported, such as vehicle counting, traffic control, and
object re-identification, as shown in Figure 1 [1].

Additionally, some studies leverage the spatial and tem-
poral correlations among cameras to enhance system perfor-
mance in multi-camera systems [2], [3]. While the demand
for video analytic applications continues to grow, it becomes
increasingly important to have powerful computing resources
in order to achieve high throughput and low latency. Edge
computing aims to provide cloud capabilities closer to end-
users by offering computing, caching, and communication
resources at the network edge [4]. Recent studies have shown

FIGURE 1. Vehicle re-identification example. a) The original video stream.
b) The video stream with re-identification results displayed using
bounding boxes and labels of different colors.

that integrating edge/fog computing architecture with video
analytics applications is an effective approach to mitigate
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latency and throughput bottlenecks in the system. By pro-
cessing the application closer to the data source, edge/fog
computing reduces the need for data transmission, minimizes
latency, and improves overall system performance [1], [5].
Various standards have been established to define the behav-
ior of edge computing, including the ETSI MEC standard
[6] and the IEEE 1935 Edge standard [7]. Among them,
the IEEE 1935 standard defines a three-tiered architecture to
leverage the management and orchestration of edge resources
and applications. With the defined workflow, the paradigm
guarantees the system’s flexibility, stability, and security. Due
to its hierarchical structure, it allows for more efficient and
diverse data processing at the edge. These advantages benefit
video analytic applications as the system can process video
analytics dispersedly and keep resources and bandwidth effi-
cient.

In real-world deployments, the number and types of objects
of interest, such as people, vehicles, and trucks, can vary
significantly both over time and across different cameras.
This variation is due to factors such as changes in environ-
mental conditions, different camera viewpoints, and dynamic
scenarios. The variation in number and type presents two
challenges: workload imbalance and data drift.

For an introductory video analytics systemwith cloud/edge
architecture, workload imbalance can cause serious issues.
Each camera’s video processing stream is fixed on a cen-
tralized cluster or the nearest edge server. This setup re-
sults in some servers being overloaded with work while oth-
ers are underutilized, leading to lower processing through-
put and higher latency. Some recent studies have explored
methods for dynamically distributing the processing pipeline
across the cluster, which reduces latency and improves overall
throughput [8]–[13].

Data drift is another significant issue for video analytics
on the edge. Since edge servers have limited computational
resources, they can only support deep neural network (DNN)
models with fewer weights. This limitation makes the model
likely to lose accuracy when faced with significant data vari-
ations. A promising approach to address data drift is continu-
ous learning. It involves incrementally retraining edge DNNs
on new video samples while retaining previous knowledge.
By continuously updating themodels with new data every few
minutes, the edge DNNs can adapt to changing environments,
evolving object behaviors, and other variations over time [14],
[15].

Both workload imbalance and data drift are crucial issues
in multi-camera video analytics systems. Moreover, there are
several challenges to address with both issues. Continuous
learning requires enormous computing resources, offloading
requires large network bandwidth between servers, and the
time scale of data drift and workload imbalance is different.

As a result, the authors propose Workload and Model
Adaptation (WMA), a cross-camera video analytic frame-
work to tackle these challenges. The framework utilizes
a three-tiered edge system, which adheres to the IEEE
1935 Edge standard. Besides, it decouples complex multi-

hierarchical problems, tackles each issue independently, and
optimizes the overall system performance. In the edge system,
the middle-layer server aims to monitor the workload and ad-
dress workload imbalance. The top-layer server is responsible
for monitoring accuracy and sharing the fine-tuned model.
The key contributions are as follows:

• Amulti-camera vehicle tracking system, which incorpo-
rates retraining and workload balancing techniques, is
proposed. The results show that the proposed algorithm
can enhance the system’s overall throughput across cam-
eras.

• The utilization of GPU for real-time vehicle tracking
is analyzed and leveraged in the proposed mechanism.
Therefore, the system is more consistent in practical
usage.

• The cross-camera vehicle tracking system is fully com-
patible with the IEEE 1935 edge standard, which ensures
compatibility across heterogeneous devices and enables
exceptional flexibility and scalability.

The rest of this paper is organized as follows. Section
II delves into a discussion of work related to this research.
Section III outlines the proposed system model. Following
this, the problem formulation is introduced in Section IV.
Section V details the evaluation setup and outlines the experi-
ments conducted. Lastly, the research findings are concluded
in Section VI.

II. RELATED WORK
This section introduces the IEEE 1935 edge standard archi-
tecture, which is the primary edge system architecture used
in this study. Additionally, it also examines the multi-camera
video analytics systems research and categorizes them into
four domains: video analytics optimization, resourcemanage-
ment, configuration improvement, and envisioned system.

A. IEEE 1935 EDGE STANDARD
IEEE 1935 edge standard provides better availability, flexi-
bility, and scalability in the Edge/Fog systems. The standard
defines a three-level architecture for different functions to
enable the management and orchestration of the Edge/Fog
system [7]. Figure 2 shows the overall architecture of the
Edge/Fog system. The IEEE 1935 standard also offers a set of
APIs to manage and configure the resources and applications
in the Edge system [16].
The functionalities of each level are described as follow:

1) Edge/Fog Orchestrator (EFO): The top layer of the
edge computing system. The Edge/Fog Orchestrator is
designed to manage and control the Edge system. It is
responsible for interacting with users, handling applica-
tions properly, and providing system functionalities and
infrastructures. There are many components in the EFO,
including Virtual Function Management and Orchestra-
tion (VF M&O), Rule Framework, and Edge Inventory
Manager (EIM). VF M&O is responsible for the start-
up and operation of the application. Rule Framework
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FIGURE 2. The Architecture of IEEE 1935 Edge Standard (Adapted from
the standard document)

deals with all conditions, requirements, and reactions.
EIM provides a real-time view of the system’s various
inventories, including resources and services.

2) Edge/Fog Control Node: The middle layer of the edge
computing system. Control nodes oversee the Compute
nodes and manage related resources. The entities can
be divided into two categories based on their manage-
ment targets: the (Virtualization) Infrastructure Man-
ager, which focuses on resource management, and the
Edge Platform Manager, which focuses on application
management.

3) Edge/Fog Compute Node: The bottom layer of the
edge computing system. Compute nodes are responsible
for practical computing tasks. Edge applications inter-
act with the Edge Platform and communicate with the
internet via the Data Plane.

B. VIDEO ANALYTICS OPTIMIZATION

The video analytics application comprises a sequential se-
ries of stages, encompassing frame partitioning, region of
interest (ROI) detection, and model inference. Various studies
enhance the performance by optimizing individual stages in
specific contextual scenarios.

Spatula [3] exploited the spatial and temporal correlations
in multi-camera scenarios to reduce computing costs. Re-
ducto [17] improved the resource consumption by optimizing
the filtering mechanism in the video analytic pipeline. AMS
[18] utilized a remote server for model training and updated
the edge device to improve performance. A. Aliouat et al.
dug into the video coding strategy and proposed a fast ROI
detection method [19].

C. RESOURCE MANAGEMENT
Video analytics is a resource-hungry application. Due to lim-
ited resources, processing multiple video streams simultane-
ously on the server poses a challenge. Thus, it is critical to
have an intelligent resource management mechanism. The
techniques for better resource management include video
pipeline partition and deployment, video pipeline integration,
and server workload balancing. The balance mechanism for
both pipeline and workload can be activated within seconds,
ensuring swift adaptation to variations.
VideoEdge [8] identified the best video pipeline config-

uration by resources and accuracy. The system also placed
the pipeline across the hierarchy of clusters and merges typ-
ical components across pipelines. VideoStorm [20] designed
a scheduler that efficiently considered the resource-quality
profile and lag tolerance. Distream [9] adaptively balanced
the workloads across smart cameras and partitioned the work-
loads between cameras and the edge cluster. F. Faticanti et
al. proposed a method to determine the placement of video
pipelines on infrastructure and aimed to improve the cover-
age of the camera network [21]. C. Rong et al. scheduled
massive camera streams and tasks on end-edge-cloud ar-
chitecture with comprehensive consideration of computation
and networking resources [11]. M. Zhang et al. designed a
blockchain-based edge system to reduce the execution time
by mapping video pipeline to edge [22].

D. CONFIGURATION IMPROVEMENT
The configuration of the application includes video resolu-
tion, hyper-parameters, and model selection. Improving the
video pipeline configuration involves leveraging the corre-
lation between cameras, such as region of interest, object
density, and field of view. Another approach to enhance con-
figuration is implementing continuous learning to adapt the
model. The inference model will undergo updates every few
minutes through retraining with newly arrived data.
Chameleon [23] adapted the configurations over time and

utilized both spatial and temporal correlations to amortize
the overhead of adaptation. CrossRoI [2] generated a better
region of interest for each camera based on offline processing
of multiple video streams. Convince [24] utilized spatiotem-
poral correlation to eliminate redundant frames and reduce
bandwidth utilization. J. Li [25] adjusted the camera pose
by jointly considering other camera poses in active object
tracking applications. Ekya [14] scheduled the training and
inference process to achieve higher frequency. RECL [15]
shared the fine-tuned model across edges and designed the
model selection algorithm.

E. ENVISIONED SYSTEM
Some systems also claim to provide potent video analytics
applications but do not provide any implementations. J. Yi
et al. [26] aimed to build a software-defined video analytics
system with a holistic resource orchestrator. The proposed
system exploited cross-camera collaboration and could run
various applications simultaneously. G. H. Apostolo et al.
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FIGURE 3. The system architecture of WMA

[27] proposed Live video analytics as a service to achieve
flexibility, agility, and efficiency. The system included a
declarative interface, an adaptive analytics engine, and an
efficient runtime system.

Previous studies focused on either resource management
or configuration improvement. These existing works do not
build a comprehensive system for video analytic applications.
This gap highlights the need for integrated frameworks that
combine resource management and configuration improve-
ment to optimize resource allocation and enhance perfor-
mance.

III. SYSTEM MODEL
This paper proposed WMA, the three-tiered edge comput-
ing system aligned with the IEEE 1935 edge standard, as
shown in Figure 3. The Edge/Fog Orchestrator can collect
metrics from all Compute nodes. The Control node, situated
at road intersections, manages these Compute nodes and
monitors their workloads. Each Compute node is a worker
node, running applications for nearby cameras. The Control
node and the underlying Compute nodes form a Cluster. The
dashed lines represent connections between the cameras and
servers, whereas the solid lines depict connections between
two servers. The cameras are deployed across the road inter-
sections as the input of the video analytic service.

The proposed system’s detailed component design and
workflow consistent with IEEE 1935 standard is illustrated
in Figure 4. The system’s workflow involves the VF M&O,
Rule Framework, and Edge Inventory Manager in EFO, Edge
Platform Manager in the Control node, and Edge Platform
and Edge App in the Compute node.

The brown arrows indicate the data flow of the application,
while the green and blue arrows represent the control flow
of the management scheme, which will be explained in more
detail in the next section.

Consider that there are V cameras andN Compute nodes in
the cluster. Each camera can stream the video to any Compute
node in the cluster in the Compute node. The mapping from
the camera to the Compute node is defined as binary variable
evn. If the camera v is processing on Compute node n, evn
equals to 1.

FIGURE 4. The IEEE 1935 Edge Standard compatible system architecture
and system workflow.

The parameters and detailed definition of overall system
architecture are denoted as follows:

• V: The set of video streams (cameras). Defined as V =
{1, 2, · · · ,V}.

• N : The set of Compute nodes in a cluster. Defined as
N = {1, 2, · · · ,N}.

• E : The set of binary variable evn. Defined as E =
{evn|v ∈ V, n ∈ N}.

Other parameters used in this article are summarized in
Table 1.
This paper adopts vehicle re-identification as the authors’

focus for the cross-camera video analytics application on the
edge system. Vehicle re-identification is a more complex task
compared to conventional video analytics tasks such as object
detection and classification. While vehicle re-identification is
a challenging and less explored area in previous studies, it
holds significant potential in multi-camera systems for real-
world applications.
The analysis of GPU utilization and memory consumption

is performed during the application execution, and issues
related to multi-process execution are noticed when running
multiple tasks simultaneously on a single server. Specifically,
the concurrent execution of several tasks on a single server
revealed limitations in GPU utilization.

A. VEHICLE RE-IDENTIFICATION
Vehicle re-identification has become a popular and complex
application in vehicle analytics today. Several competitions,
such as the AICity Challenge, have included this topic for
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TABLE 1. List of Notations

Notation Definition

V Set of video streams (cameras)

v A video stream (v ∈ V)
N Set of Compute nodes

n A compute node (n ∈ N )

E Set of video stream, compute node mapping

evn A set of binary variables (evn ∈ {0, 1}∀v ∈ V, ∀n ∈ N ).

evn = 1 if video stream v process on compute node n.

Cn Compute resource of edge server n

CR Compute resource requirement for retraining

ϕn A set of binary variables (ϕn ∈ {0, 1}).
ϕn = 1 if retrain on compute node n

C I Compute resource available for inference

C I
n Actual compute resource for inference allocated on server n

C I
v The actual compute resource allocated of each video stream v.

M I The GPU memory cost required for each application

Mn The total GPU memory size on compute node n.

vτ workload of video stream v at time τ

Tr The set of timestamps of each retraining decision window

τr the time to make decision (τr ∈ Tr ).

To The set of timestamps of each offloading decision window

τo the time to make decision (τo ∈ To).

Avτ MOT Accuracy of video stream v at time τ

Dvτ Accumulated object numbers of video stream v at time τ

γ compute resource discount factor for multi-process executing

many years. The solutions for this application are diverse, yet
they generally follow a common framework.

The general pipeline of vehicle re-identification applica-
tions includes three steps: object detection, feature extrac-
tion, and tracking [28]. Figure 5 shows the re-identification
pipeline of each video frame. The application will first get the
vehicles at each video frame by objection detection. Second,
use a deep learning model to generate each vehicle’s feature
vector, representing the vehicle’s color and type. Third, the
tracking module performs algorithms using features and his-
tory data to get the ID of each vehicle. The feature extraction
and tracking step are called re-id in this paper for simplicity.

The result of analyzing the executing time of each step
per frame can be found in Table 2. This application’s feature
extraction step takes significantly longer than other steps,
indicating that it can be considered the critical step. It stems
from the fact that the inference step for feature extraction is
notably more intricate than other steps. Numerous objects in
a single frame necessitate running inference multiple times.

Another important observation is that vehicle re-
identification is a stateful application because the tracking
algorithm relies on historical data to identify and track ve-
hicles over time. Consequently, parallel execution of the re-
identification process is impossible due to its stateful nature.

FIGURE 5. The re-identification pipeline of each video frame.

TABLE 2. Executing time for each step in re-identification

Object Detection Feature Extraction Tracking

Time (ms) 7.6 76.7 12.3

This limitation gives rise to GPU utilization issues, which will
be discussed in the following subsection.

B. GPU UTILIZATION AND MEMORY
GPU utilization and memory are crucial parameters in video
re-identification applications. Both parameters present indi-
vidual challenges that can limit the overall system perfor-
mance.

• GPU Utilization: GPU utilization, defined as the per-
centage of time over the past sample period during
which one or more kernels are executing on the GPU,
is a crucial metric for evaluating the efficiency of CNN
inference [29]. However, it has often been overlooked in
previous studies [30]. One reason is that many popular
deep learning-based applications, such as object detec-
tion, classification, and anomaly detection, only contain
CNN inference tasks, which inherently tend to achieve
high GPU utilization in theory.
The execution of vehicle re-identification must occur
sequentially, and only some steps utilize the GPU so that
the GPU utilization will not reach 100% theoretically.
As a result, instead of modeling the execution time
proportional to the total computing power of the server
[22], the computing resource cost C I is modeled as a
fixed value even when the server has a larger capacity.

• GPU Memory: GPU memory refers to the amount of
storage available on a GPU for storing and processing
data. When the available GPU memory on a Compute
node is insufficient, it can lead to application failures
when running on the GPU. The size of the GPU mem-
ory on the Compute node becomes a limiting factor in
determining the maximum number of applications that
can be executed simultaneously on a single server.
The limitations on server n with Mn GPU memory can
be modeled using the following equation.M I represents
the memory cost of each application and indicates that
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the total GPU memory used by all applications running
on a server cannot exceed the server’s limit.∑

v∈V
evn ·M I ≤ Mn ∀n ∈ N (1)

C. MULTI-PROCESS EXECUTING MODEL
Several GPU-related processes would execute simultaneously
on a single server in the multi-camera video analytics system.
It is observed that when multiple processes run on a single
server, the GPU utilization does not increase proportionately
to the number of processes. To address this issue, a modifier
γ is added to the compute resource of each process C I . C I

n
and C I

v represent the actual resource cost for all applications
and each video stream.

The total compute resource of inference process C I
n on the

server n can be modeled as the following equation.

0 < γ ≤ 1

γ ·
∑
v∈V

evn · C I = C I
n ∀n ∈ N∑

v∈V
evn · C I

v = C I
n ∀n ∈ N

(2)

D. VIDEO ANALYTIC THROUGHPUT MODEL
System throughput emerges as a crucial metric in evaluating
the performance of the vehicle analytics system. This study
defines the throughput in terms of frame processed per second
(FPPS). Therefore, the throughput of the video stream v at
time τ is modeled by following formula:

FPPS =
C I
v

vτ · k
(3)

The throughput is the resource allocated for this stream
divided by the resource required by the application. Here, k
is a constant representing the execution speed per workload.
The total throughput on Compute node n can be calculated by
summing up all the video streams on this server, as indicated
by the following formula:

FPPSn =
∑
v∈V

evn ·
C I
n/

∑
v∈V evn

vτ · k
(4)

IV. PROBLEM FORMULATION
This section provides the mathematical formulation of this
work. The objective is to optimize the overall throughput of
the video analytics service across all Compute nodes. The
overall problem can be formulated as:

maxFPPSsystem = max
∑
n∈N

FPPSn

= max
∑
n∈N

∑
v∈V

evn ·
C I
v

vτ · k

= max
∑
n∈N

∑
v∈V

evn ·
C I
n/

∑
v∈V evn

vτ · k

(5)

Constraints:

C1 : ϕn · CR + C I
n ≤ Cn ∀n ∈ N

C2 : C I · γ
∑
v∈V

evn = C I
n ∀n ∈ N

C3 :
∑
v∈V

evn ·M I ≤ Mn ∀n ∈ N

C4 :


evn ∈ {0, 1} ∀v ∈ V,∀n ∈ N∑
n∈N

evn = 1 ∀v ∈ V

C5 :


ϕn ∈ {0, 1} ∀n ∈ N∑
n∈N

ϕn = 1

(6)

Constraint C1 states that the overall compute resource can-
not exceed the server capacity. Constraint C2 represents the
multi-process limitation, as discussed in Section III-C. Con-
straint C3 sets the maximum application process limit for
each server, as described in Section III-B. Constraint C4
means that one video stream can only be processed by one
Compute node. Constraint C5 guarantees that the retraining
process can only run on one Compute node in the cluster.
A heuristic algorithm is designed to schedule the retraining

process and fully utilize the compute resource to maximize
the overall throughput. The algorithm is decoupled into two
stages, the model retraining and workload offloading, and the
Edge/Fog orchestrator and Control node manage these two
stages, respectively.
There are three benefits to decomposing and managing the

solutions by different roles.

• Network bandwidth:Workload offloading requires sig-
nificant network bandwidth. The transmission overhead
can only be ignored in a small area in a single cluster.
Second, the fine-tuned model generated by model re-
training can be reused for different regions.

• Model reusing: The fine-tuned model generated by
model retraining can be reused for different regions.
The Edge/Fog orchestrator can manage these models
effectively.

• Time scale: The timescale of the two problems is dif-
ferent. The workload on each camera is dynamic over
seconds, while the accuracy only drops over a long
period. The algorithm has to perform offloading much
more frequently than model retraining.

Figure 6 illustrates the system workflow of the two-staged
algorithm. In the first stage, the system makes the model
retraining decision on EFO using metrics collected from the
Compute node. In the second stage, the system balances the
workload across the system based on calculations performed
by the Control node.
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FIGURE 6. The system workflow of proposed algorithm.

A. FIRST STAGE: MODEL RETRAINING SCHEDULER
The model retraining scheduler is a heuristic method for
Edge/Fog orchestrator that aims to decide the retraining deci-
sion ϕn. The cameras in the same cluster are near each other
geographically, and the video captured by cameras within a
cluster is similar. As a result, multiple retraining processes
executing simultaneously are restricted in the same cluster,
which is the constraint C5.

The model retraining scheduler makes the retraining deci-
sions over some time τr . Let the set including τr be Tr . For
the sake of simplicity, in the following part, it is assumed that
the algorithm operates at time τ .
The algorithm begins with initiating the retraining candi-

dates set M as an empty set. For each Compute node n,
calculate the average accuracy An and the accumulated data
size Dn.

If An is lower than threshold α and Dn is larger than δ
to initiate the training progress, make Compute node n as a
candidate to start the retraining progress and append n into
retraining candidates setM. After calculating on all Compute
nodes, select the node with the lowest accuracy among all
retraining candidates. Since each Compute node is traversed
once, the overall computational complexity is O(N ). For a
detailed step-by-step description of the algorithm, refer to
Algorithm 1.

B. SECOND STAGE: WORKLOAD OFFLOADING
In this stage, workload offloading is the heuristic algorithm
for the Compute node that aims to balance the workload
between servers in the cluster. In general, the Control node
monitors the workload of each video analytic pipeline in the
cluster and modifies the execution server of each pipeline.

Algorithm 1: Model Retraining Scheduler
Input: Compute node capacity Cn, camera-server

mapping evn
Output: Retraining decision ϕn

1 M← ∅
2 foreach n ∈ N do
3 An ← 1∑

v∈V evn

∑
v∈V evn · Av

4 Dn ←
∑

v∈V evn · Dv

5 if An ≤ α and Dn ≥ δ then
6 M←M∪ {n}
7 end
8 end
9 i← argminm∈M Am

10 ϕi ← 1

Given that the Compute nodes are close to one another and
benefit from extensive network bandwidth, the transmission
overhead from offloading data within the cluster is disre-
garded.
The algorithm will execute continuously at intervals of τo,

as the video content is streamed without interruption, and
the workload needs to be adjusted dynamically. Let the set
including τo be To. For the sake of simplicity, in the following
part, it is assumed that the algorithm operates at time τ .
Let the total workloads on Compute node n be wn. Since

the compute resource on each server may not be the same,
calculate the adjusted workload w′

n based on the computing
power of each server. These parameters can be computed as

wn =
∑
v∈V

evn · vτ (7)

w′
n = wn ·

Cn
C̄n

(8)

Let the Compute node with the maximum and minimum
workload be node i, and node j, respectively, and the workload
difference between i and j be∆. If∆ is larger than two times
the minimum workload u on node i, offload this video stream
and continue to perform the previous balancing procedure.
The complexity of this algorithm is constrained by the quan-
tity of video streams, expressed as O(V ). Refer to Algorithm
2 for a detailed step-by-step algorithm description.

V. EVALUATION
This section first provides an overview of the experimental
environment for evaluating the proposed scheme, including
the dataset and the testbed information. Subsequently, the
proposed algorithms are evaluated by comparing them against
existing algorithms under different system configurations.

A. SYSTEM IMPLEMENTATION
1) Dataset
Two different datasets are used for the vehicle re-
identification application training and testing: CityflowV2
[31] and VRIC [32].
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Algorithm 2: Workload Offloading
Input: Video stream workload vτ , compute resource

Cn, GPU memory Mn

Output: The video process decision evn
1 wn ←

∑
v∈V evn · vτ

2 w′
n ← wn · CnC̄n

3 i← argmaxn∈N w′
n, j← argminn∈N w′

n
4 ∆← w′

i − w′
j

5 u← argminv,evi=1 vτ
6 while∆ > 2 · uτ do
7 if

∑
v∈V evj ·M I > Mj then

8 break
9 end

10 eui ← 0
11 euj ← 1
12 wn ←

∑
v∈V evn · vτ

13 w′
n ← wn · CnC̄n

14 i← argmaxn∈N w′
n, j← argminn∈N w′

n
15 ∆← w′

i − w′
j

16 u← argminv,evi=1 vτ
17 end

FIGURE 7. A part of the CityFlowV2 dataset includes five cameras situated
at a road intersection. The images at the right hand side are the view of
Camera 1 and Camera 5.

• CityFlowV2: CityFlowV2 is an official dataset of the
6thAI City Challenge Track 1: City-ScaleMulti-Camera
Vehicle Tracking, the updated version of CityFlow. The
dataset consists of videos captured by 46 cameras in a
real-world traffic surveillance environment. There are
215.03 minutes of videos in total, and most of the videos
have a frame rate of 10 FPS. Part of the CityFlowV2
dataset is shown in Figure 7, which includes five cameras
in the same intersection from different perspectives.

• VRIC: VRIC is another vehicle re-identification dataset
that includes variations in resolution, motion blur, il-
lumination, occlusion, and viewpoint. VRIC contains
60,430 images of 5,622 vehicle identities that are cap-
tured by 60 different cameras at heterogeneous road
traffic scenes. The example images that cropped from
the original paper are shown in Figure 8.

FIGURE 8. Example vehicle bounding-box and whole scene images of the
VRIC benchmark.

2) Video analytic application
This section introduces how the application is built and high-
light the available configurable options.

• Video re-identification application: The general appli-
cation is a modification of a Python project developed
by Regob [33]. The project is well-structured and offers
simple configuration options for customization, such as
model usage, tracking algorithm selection, and dataset
format.

• Object detection model: As the first step in the vehi-
cle re-identification pipeline, there are several options,
such as simple background subtraction, YOLO [34], and
Mask R-CNN [35]. Both YOLO andMask R-CNN have
been hugely influential in the field of object detection.
YOLO is known for its speed and efficiency, and Mask
R-CNN achieves high accuracy but can be slower.
The YOLO model is selected, specifically implement-
ing YOLOv5s weights due to its effectiveness and
lightweight design.

• Feature extraction CNN model: VRIC dataset is uti-
lized to train the main feature extraction model and per-
form the vehicle analytic application on the CityflowV2
dataset. For the model’s architecture, the Resnet-IBN
network is adopted and trained for 20 epochs. In the re-
training process, the model is fine-tuned for five epochs.

• Tracking: Among the various tracking algorithms avail-
able, including DeepSORT [36], and ByteTrack [37].
DeepSORT introduces a neural network to compute the
appearance descriptors, and this deep association metric
significantly improves tracking performance. ByteTrack
is a newer tracking algorithm that simplifies the tracking
problem into a top-k list update problem and achieves
high accuracy. DeepSORT is chosen for the application,
given its popularity and widespread usage in several
benchmark datasets and applications.

• Logging and Monitoring: The Weights and Biases
(W&B) library is used for metrics logging and monitor-
ing. W&B is a machine learning toolset that helps re-
searchers and developers track and visualize their mod-
els’ performance. This research utilizes its logging sys-
tem and dashboard service that can plot metrics in real-
time. Additionally, Weights and Biases can log system
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usage simultaneously, which is extremely helpful in the
experiments.

It is noted that the application benefits from edge com-
puting because it contains monitoring, tracking, and object
detection, which requires real-time surveillance, low latency,
and well-organized resource distribution.

3) Hardware
The server, which acts as a Compute node, is equipped with
an AMDRyzen 7 5800X CPU and an NVIDIAGeForce RTX
3080 GPU. The server has 8 CPU cores, 64 GiB of memory,
and 10 GiB of GPU memory.

B. EXPERIMENTAL SETTINGS
The metrics of system throughput and latency are adopted
to evaluate the performance of the proposed approach. The
throughput is related to FPPS and the latency is to the average
task execution time and queueing time for all streams.

The system schedules the video analytics tasks with of-
floading. The system performance is evaluated and compared
against several benchmark solutions.

• Randomlymapping: The cameras randomly map to the
Compute node to start the video analytic application.

• Evenly mapping: The cameras map to the Compute
node evenly. That is, the number of video streams ex-
ecuting on each Compute node is evenly distributed.

• WMA: The cameras map to Compute nodes by work-
load and perform the offloading mechanism when the
workload changes.

The impact of the retraining mechanism is also assessed
within the system. The label noR, appended at the end of each
scheme, signifies that the retraining mechanism is not being
utilized in that particular scheme.

C. ANALYSIS OF SYSTEM PERFORMANCE
The system performance is observed and analyzed based on
various factors, including the number of processes, dynamic
workloads, Compute nodes, and cameras.

1) Impact of multiple processes execution
As mentioned in Section III-C, performance decreases when
multiple processes are executed on a single server. In the
evaluation, the processing throughput of a single video stream
is measured when multiple processes are executing simulta-
neously. This analysis aims to understand how the concurrent
execution of processes affects the performance of the video
stream processing.

As depicted in Figure 9, the throughput decreases as the
number of processes increases. Specifically, the throughput
decreases by a factor of 75% with each additional process.

2) Relationship between workload and throughput
The video re-identification pipeline’s processing speed is
highly influenced by the objects or workload in each frame,

FIGURE 9. Relationship of throughput and process number on a single
server.

FIGURE 10. Relationship of throughput and workloads.

primarily due to the critical feature extraction step mentioned
in Section III-A.
Figure 10 depicts the relationship between workloads and

throughput, illustrating a negative proportionality. As ob-
served, there is an inverse correlation between workload and
processing speed, meaning that as the workload increases, the
processing speed decreases.

3) Impact of dynamic workload
The performance of WMA and various baselines are eval-
uated under dynamic workloads. Figure 11 shows that the
workloads across five cameras in the dataset are dynamic
over time. One notable observation is that Camera 5 has a
higher average workload than the other cameras, achieving
more than two times the workload of Camera 1. As shown in
Figure 7, Camera 5 is a wide-angle camera with a larger field
of view than the others. This hardware difference results in
more vehicles appearing in the view of Camera 5, leading to
higher workloads.
As shown in Figure 12, the average system throughput

of WMA outperforms the baselines by 12% and 32%. In
the schemes without the retraining algorithm, WMA still
outperforms the baselines, achieving improvements of 10%
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FIGURE 11. Workload dynamics of five cameras in CityFlowV2 dataset

FIGURE 12. Relationship of the system throughput and dynamic
workloads.

and 27%, respectively. The retraining decision is made at
frame 1000, leading to a significant drop in the throughput
for each scheme. The retraining mechanism results in an 8%,
11%, and 15% drop in WMA and the baselines, respectively.
The trends over time of the three schemes are similar since
the throughput is highly related to the workloads. The evenly-
mapping scheme can achieve relatively high performance
because the workload between the dataset’s cameras is not
significantly imbalanced. When the workload distribution is
relatively even across cameras, the evenly-mapping scheme
can allocate resources efficiently and avoid overloading spe-
cific cameras.

The average latency of each video stream under dynamic
workloads is also evaluated. As shown in Figure 13, the
average latency of WMA surpasses the baselines by 15% and
65%. Even in the schemes that do not employ the retraining
algorithm, the system continues to outperform the baselines,
demonstrating improvements of 12% and 55% improvement,
respectively. Introducing the retraining mechanism leads to
an increase of 7%, 13%, and 14% inWMA and the respective
baselines.

FIGURE 13. Relationship of the system latency and dynamic workloads.

FIGURE 14. Relationship of system throughput and the number of
Compute nodes.

4) Impact of the Number of Compute nodes
The number of the input video stream is set to 5. TheWMA is
evaluated by different numbers of Compute nodes from 1 to
5, as shown in Figure 14. The performance of one Compute
node and five Compute nodes is identical to the baseline in
this context because no decision-making is involved in either
situation. When the number of Compute nodes is set to 1,
all video streams can only process on a single server. Each
video stream is processed at a different server if the number
of Compute nodes is set to 5. Each video stream is processed
on a different server when the number of Compute nodes is
set to 5. Both configurations need no offload decision.
The performance of the configuration with 2 and 3 Com-

pute nodes shows significant improvements compared to the
randomly mapped baseline. In terms of overall throughput,
these configurations exhibit a notable gain, with an improve-
ment of 25% and 27%, respectively.

5) Impact of the Number of Cameras
The number of the Compute nodes is set to be 2, and WMA
is evaluated by different numbers of cameras from 2 to 5,
as shown in Figure 15. The throughput is normalized by the
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FIGURE 15. Relationship of average throughput and the number of
cameras.

number of cameras. The performance of the 2-camera setup is
identical to the baseline because there is no decision-making
involved in this scenario, where each camera has its own iso-
lated Compute node to utilize. In the cases of 3 and 5 cameras,
the throughput improved by 19% and 25%, respectively. The
case of 4 cameras does not show improvement since having
two cameras on two servers is already well-balanced in the
authors’ dataset. Besides, it is observed that as the number
of cameras increases, the average throughput decreases since
the size of the compute resource is fixed.

VI. CONCLUSION
This paper proposes WMA, a two-staged resource allocation
method on a three-tiered cross-camera video analytic system.
The system supports both model fine-tuning and workload
balancing. The system architecture and control workflow are
consistent with the IEEE 1935 edge standard. The research
first digs into the GPU utilization performance of vehicle re-
identification applications and then investigates the camera
workload dynamics. The system evaluation is performed with
a commonly-used dataset. The results show that the proposed
design outperforms the baseline and increases the system’s
overall throughput across cameras. As part of future work,
the authors would like to add configurable options to the
camera input, such as video resolution, FPS, and hardware
information. The selection of these parameters can provide
more options for the proposed algorithm, further enhancing
overall performance. Moreover, the system can be evaluated
using larger datasets or practical settings. These add-ons will
provide a more significant variation in video content, enhanc-
ing the robustness of the evaluations.

In considering future work, exploring the generality and
robustness of the proposed system model in light of advanced
software and hardware optimizations would be valuable. The
workload during inference can fluctuate in computer vision
pipelines based on image or video content. The impact of
practical optimizations, such as adaptive resource allocation
for varying workloads or spatial sharing of GPU resources,

should be investigated to understand how these optimizations
influence the results of the system model. In addition, it is
valuable to discuss the spatial sharing of the GPU among
multiple processes, an optimization extensively explored in
both academic and industry settings for enhancing infer-
ence efficiency. A comprehensive exploration of these factors
could provide insights into the scalability and adaptability
of the proposed model in real-world, dynamic computing
environments.
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